
Developing for Eclipse/RCP/CSS

Kay Kasemir, Ph.D., ORNL/SNS kasemirk@ornl.gov July 2011 at KEK

Contents
Introduction .. 2

Definitions ... 2

Is developing for RCP/CSS complicated? .. 2

RCP: Complex, but sound... 3

Sources of Information .. 4

Books .. 4

Preconditions .. 4

Create (Plug-in) Project ... 6

Java command-line “Hello”.. 7

Standalone GUI “Hello” ... 9

RCP “Hello” View ... 12

Connect to PVs .. 20

Hooking into menus .. 24

PV Context menu ‘Probe’... 26

Look at details in org.cstudio.util.pvscript .. 26

Summary ... 27

mailto:kasemirk@ornl.gov

Developing for Eclipse/RCP/CSS

2

Introduction
CSS is meant to be reasonably easy to understand for end users, with integration between tools that

was impossible with legacy EPICS tools.

For developers, this requires additional work. While it is easy to create a one-of, standalone application,

it is naturally harder to develop code that collaborates with other code. A properly developed RCP

plugin for CSS is started on demand within CSS by the user, then maybe closed, then re-opened, while at

the same time other CSS tools are opened and closed within the same instance of CSS. This requires

each CSS plugin to de-allocate its resources when closed down. A plugin should persist its state so that it

can re-open as it was left when CSS closed. Instead of hard-coded settings or maybe using environment

variables, utilize the Eclipse preference settings and offer a preference page to end users. Exchange

Process Variable names with other CSS tools, without actually knowing those other CSS tools while the

application is being developed.

Please contact me at kasemirk@ornl.gov with comments on this tutorial.

Definitions
 Eclipse IDE

Development environment for Java (also C++, JavaScript, Android, …)

 Rich Client Platform, RCP
Originally to implement the IDE, but can be used to build other applications

 Plugins
Fundamental RCP building blocks

 CSS
An RCP application, plugins for control system tools

Is developing for RCP/CSS complicated?
Yes!

Compare to building a clock.

Everybody should once build a simple clock.

Building your own clock from scratch is easier than interfacing a
complex clockwork. In fact most children learned to read a clock that
way.

End users, however, will prefer a clock that actually tells the time
without first having to adjust the clock to the correct time. They may
even need a clock that displays several time zones, can indicated
upcoming appointment times, the phase of the moon, or other time-related information.

Simple Clock

http://catalog.newtrendsonline.com/big_timetrade_

12hour_demonstration_learning_clock-p-

48566.html

mailto:kasemirk@ornl.gov
http://catalog.newtrendsonline.com/big_timetrade_12hour_demonstration_learning_clock-p-48566.html
http://catalog.newtrendsonline.com/big_timetrade_12hour_demonstration_learning_clock-p-48566.html
http://catalog.newtrendsonline.com/big_timetrade_12hour_demonstration_learning_clock-p-48566.html

Developing for Eclipse/RCP/CSS

3

Creating such a clock for end users is obviously more difficult.

Similarly, developing code for Eclipse RCP / CSS is more involved than writing a standalone Java
program.

But your users will be able to tell the difference as well.

RCP: Complex, but sound
Anybody who looked at software engineering from 1994 until today
has probably read a copy of the book “Design Patterns: Elements of
Reusable Object-Oriented Software” by Erich Gamma et. al., which is
in its 38th printing in 2010.

Erich Gamma was an initial and long-time key developer for
Eclipse/RCP. While Eclipse/RCP is certainly complex, it is based on
many sound design decisions, so it may be well worth the time
required to understand it.

Internals of a clock that actually

keeps track of the time

http://homepage.mac.com/d_halgren/WatchMvt

2.jpg

Astronomical clock, Prague

http://morfis.wordpress.com/2011/01/12/architectural-timepieces/

http://homepage.mac.com/d_halgren/WatchMvt2.jpg
http://homepage.mac.com/d_halgren/WatchMvt2.jpg
http://morfis.wordpress.com/2011/01/12/architectural-timepieces/

Developing for Eclipse/RCP/CSS

4

Sources of Information
This document walks through the steps of creating a simple plugin for Eclipse RCP and CSS. It is meant to

give an example for the general idea, and offer a comparison of the difference in complexity when going

from a command-line tool to a standalone graphical tool to finally an RCP plugin.

This tutorial cannot replace a more in-depth study. Suggested sources of information:

 Books: Look for ‘RCP’ books, not basic usage of the IDE

 IDE Help: Help Content, Platform Plug-in Developer Guide.
In the following, I refer to this as the IDE help.

 CSS Book:
http://cs-studio.sourceforge.net/docbook,
http://cs-studio.sourceforge.net/docbook/css_book.pdf
In the following, I refer to this as the CSS docbook.

 Google: Many developers use RCP.
A search will often lead to blog entries by Lars Vogel, http://www.vogella.de/

Books

McAffer, Lemieux, Aniszczyk, “Eclipse Rich Client Platform” seems to be a
good overall introduction to RCP at this time.
It is based on the earlier versions of Clayberg, Rubel, “eclipse: Building
Commercial Quality Plug-ins” and later “eclipse Plug-ins”.

McAffer, VanderLei, Archer also wrote “OSGi and Equinox” which has
details on the plugin architecture at the basis of Eclipse.

Preconditions
To get started, you need the following (with version numbers at the time of

this writing):

 Java JDK (1.6). You need a Java Development Kit. Your computer might already have a Java
Runtime Environment JRE, but you want a full JDK.

 Eclipse IDE for RCP Developers (3.6.x) from http://www.eclipse.org

 Source snapshot for one of the CSS products (http://www-linac.kek.jp/cont/css, or http://ics-
web.sns.ornl.gov/css/

After starting Eclipse, open the menu Window/Preferences and assert that you have a JDK as the default
choice under Java/Installed JREs:

http://cs-studio.sourceforge.net/docbook
http://cs-studio.sourceforge.net/docbook/css_book.pdf
http://www.vogella.de/
http://www.eclipse.org/
http://www-linac.kek.jp/cont/css
http://ics-web.sns.ornl.gov/css/
http://ics-web.sns.ornl.gov/css/

Developing for Eclipse/RCP/CSS

5

You can go through the first 2 steps of the following tutorial with this setup. From then on, you will need

the CSS sources, so you may as well prepare that now.

Unpack the CSS sources into some directory. Read the CSS docbook section on “Compiling, Running,

Debugging CSS” for details on how to import the sources into your IDE workspace.

Then open for example the KEK *.product file, select “1. Synchronize” and “2. Launch an Eclipse

application” to start CSS from within the IDE:

Developing for Eclipse/RCP/CSS

6

Tutorial Steps

Create (Plug-in) Project
Select menu File, New Project …

Select a Plug-in Project, call it “tutorial”, click Next and Finish without changing any of the other settings.

In the created tutorial project, right-click on the JRE System Library, select Properties and assert that it

uses the “Workspace default”, which should be a JDK.

Developing for Eclipse/RCP/CSS

7

Java command-line “Hello”
Right-click on the tutorial “src” directory, select “New”, “Package” to create a ”tutorial” package unless

there is already one.

Right-click on the “tutorial” package in the “src” directory, select “New”, “Class”.

Enter a Name: “CommandLineHello”, select “public static void main”, press Finish.

In the main() routine of the generated CommandLineHello.java source code file, enter a command to

print hello. As a shortcut to typing “System.out.println”, you can simply type “sys” followed by Ctrl-

space which will open the Eclipse content assist system.

Developing for Eclipse/RCP/CSS

8

Select the “sysout” entry and complete the source code to look as shown below.

Right-click on the source file, select Run As, Java Application, and the output should appear in the

“Console” view.

You can set a breakpoint on the System.out line by double-clicking in the left border of the editor. It

should add a blue ball to the left border.

Developing for Eclipse/RCP/CSS

9

When you now select “Debug As” instead of “Run As”, you will execute the code in the debugger, which

will stop on that line, you can then single-step from there on etc.

Standalone GUI “Hello”
To create a version of “Hello” that opens a Window,

i.e. has a graphical user interface, you need to use

some Java window library. Eclipse/RCP uses SWT, the

Standard Window Toolkit. The tutorial plugin needs to

be configured to use that SWT library.

Open the MANIFEST.MF file. On the “Dependencies”

tab of the Plug-in Manifest Editor, press “Add…” and

select the org.eclipse.swt plugin. You can narrow the

search to “*swt” to make it easier to locate that

plugin.

In the end, it should look as below with

org.eclipse.swt listed as one of the Dependencies of your tutorial plugin:

Developing for Eclipse/RCP/CSS

10

When you select the “MANIFEST.MF” tab you can see the raw file content that was created by the the

Plug-in Manifest Editor:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Tutorial

Bundle-SymbolicName: tutorial;singleton:=true

Bundle-Version: 1.0.0.qualifier

Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Require-Bundle: org.eclipse.swt;bundle-version="3.6.2"

Bundle-Activator: tutorial.Activator

Bundle-ActivationPolicy: lazy

The key here is the “Require-Bundle: …” line.

Similar to the CommandLineHello, create a GuiHello class by right-clicking on the “tutorial” package in

the “src” directory, select “New”, “Class”, entering a name of “GuiHello”, again selecting the “public

static void main” option, then press Finish.

In the empty main method, create an SWT main loop. This is easiest done by typing “mainloop”, then

pressing Ctrl-space to open the Eclipse content assist system and selecting the suggested SWT main loop

code.

Around the middle of that main loop code, add the Label code as shown below:

Developing for Eclipse/RCP/CSS

11

There should be an error indicator on the Label… line. When you hover your mouse pointer over the

error light-bulb in the left column, a popup will indicate “Label cannot be resolved to a type” because

the compiler is unclear what “Label” type to use.

If you right-click on the error light-bulb and select “Quick Fix”, a menu will appear that allows you to pick

“Import Label org.eclipse.swt.widgets”. Do not select the “awt” version of the Label type, pick the “swt”

type!

If your code already contains a statement “import java.awt….”, delete that.

If you do not see the “mainloop” content assist, if you do not see “org.eclipse.swt.widgets” offered for

the label, check again that your plugin has org.eclipse.swt as a dependency and there are no other

errors indicated on the plugin project.

Finally, select Run As, Java Application. A new window will open that contains “Hello” as a text. You can

move that window around, finally close it.

So now we created both a command-line and a simple GUI version of a “Hello” program. The GUI

version clearly requires more code.

Developing for Eclipse/RCP/CSS

12

The next step will be a GUI version of Hello that integrates with Eclipse RCP/CSS.

RCP “Hello” View
Instead of opening a new, standalone window, this version will display “Hello” within Eclipse/CSS, as a

View similar to the Console view. A view that we can move around within CSS. When restarting CSS, it

will remember the last location of our view, unlike the standalone window that always appears at some

default location, not remembering its last position and size.

Instead of opening a display and top-level shell in our own code, we depend on Eclipse/CSS to open the

main window. We also let Eclipse handle the main loop. All we contribute is a View for Eclipse to display.

The way to interface with RCP, with other plugins in general, is through Extension Points. In this

example, we use an Extension Point “Views” offered by the Eclipse user interface to add a view.

In the tutorial Plug-in Manifest Editor, select the “Dependencies” tab.

Remove the dependency on the org.eclipse.swt plugin. Instead, add dependencies to

 org.eclipse.core.runtime

 org.eclipse.ui

Developing for Eclipse/RCP/CSS

13

It should look similar to the left screenshot shown above.

When you double-click on the org.eclipse.ui entry, Eclipse opens the Plug-in Manifest Editor for the

org.eclipse.ui plugin, as shown to the right above. In the Dependencies tab of org.eclipse.ui, notice that

it depends on org.eclipse.swt.

So we have this dependency hierarchy: Tutorial -> org.eclipse.ui -> org.eclipse.swt

We no longer need a direct entry for org.eclipse.swt because we get that from depending on the

org.eclipse.ui plugin.

Developing for Eclipse/RCP/CSS

14

Look at the Extension Points tab of org.eclipse.ui. Locate the “views” extension point. You may click

“Show extension point description” and browse through that. In principle, it has all the information for

using that extension point. But it can be hard to understand for newcomers.

Going back to the Plug-in Manifest Editor for the tutorial plugin, open the Extensions tab.

Developing for Eclipse/RCP/CSS

15

“Add” an extension to the org.eclipse.views extension point. In the extension point selector, you could

select the “Sample View” template, but for this tutorial press “Finish” without selecting it.

To implement the extension point, the editor will indicate that you must provide an id, name and class.

Enter the names shown below:

Developing for Eclipse/RCP/CSS

16

You can also check the plugin.xml tab of the editor. It will show the raw XML description of our

extension point, and it should look like this:

<plugin>

 <extension point="org.eclipse.ui.views">

 <view id="tutorial.helloview"

 class="tutorial.HelloViewPart"

 name="Hello View"

 restorable="true">

 </view>

 </extension>

</plugin>

This XML content is explained in the extension point description. Usually, however, it is sufficient to use

the other tabs of the editor to view and modify the extension point info, so return to the “Extensions”

tab.

When you click on the blue “class*:” link, a new class wizard will open because that class

“tutorial.HelloViewPart” does not exist, yet.

Developing for Eclipse/RCP/CSS

17

If you had carefully read the extension point description, you would remember that the class provided

for the views extension point should extend the org.eclipse.ui.part.ViewPart class. Note how the class

wizard is already pre-populated with …ViewPart as the Superclass. Press Finish.

Edit the code to look like this:

package tutorial;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Label;

import org.eclipse.ui.part.ViewPart;

Developing for Eclipse/RCP/CSS

18

public class HelloViewPart extends ViewPart

{

 @Override

 public void createPartControl(Composite parent)

 {

 // Create the label, similar to the GuiHello example,

 // using the 'parent' provided by Eclipse/RCP

 Label hello = new Label(parent, 0);

 hello.setText("Hello");

 }

 @Override

 public void setFocus()

 {

 // Nothing to do

 }

}

Note that you fundamentally just add the Label… code inside createPartControl(). If there was a

HelloViewPart constructor, you can delete it. The setFocus() must remain, even though it is empty.

How do we run our tutorial plugin within Eclipse/CSS?

You need to have at least once executed some CSS product, for example the KEK version of CSS, as

mentioned in the Preconditions section on page 4. From the menu Run, Run Configurations…, locate the

run configuration for your product. On its Plug-Ins tab, add the tutorial plugin. This will be easier after

entering a filter like “*tut” to reduce the very long list of available plugins to the one you are looking for:

You can press “Validate Plug-Ins”, there should be no error. Press “Run”.

Developing for Eclipse/RCP/CSS

19

Your CSS product should start and look like before.

So where is the new “Hello” View?

Your tutorial plugin offers a new “Hello” view to

Eclipse/RCP/CSS. But nothing is automagically opening it. A

user has to actually request to see your view.

This can be done via the menu Window, Show View, Other…

where the “Hello View” will appear towards the end under

“Other”.

If we had defined a Category for our view, we could have

placed our view in the CSS category. Check the plugin.xml file

of for example org.csstudio.utility.clock which defines a

category for its view.

After opening your “Hello” view, it should now appear within

CSS. You can move it around just like any other Eclipse view.

When restarting CSS, it will remember the location and size of

the Hello view:

This step in the tutorial is quite long, and it certainly covers a lot of RCP detail: plugin dependencies, the

‘views’ extension point and how to implement it, finally adding a plugin to a run configuration and

opening a view.

Developing for Eclipse/RCP/CSS

20

When you compare the standalone GuiHello.java to the code required to implement the view, there is

not much more code required. The essential Label… section is essentially the same. The learning curve

for creating the view is steep, but at the same time the result is something that integrates with other

views, where the framework restores the size and location on restarts.

Connect to PVs
The Hello view example was static. In this section, we will extend it to display the changing value of a PV.

For simplicity, the PV name will be fixed.

CSS offers several ways of accessing PVs. A straight forward API for creating individual PVs and listening

to their updates is the utility.pv API described in the docbook Part II. Plug-in Reference, PV Access -

org.csstudio.utility.pv.

First, you need to add a dependency on the org.csstudio.utility.pv plugin to the tutorial plugin:

Developing for Eclipse/RCP/CSS

21

In HelloViewPart.java, change the ….Label … code such that the label is a field of the class that we can

later update with the current value of the PV.

You can most easily accomplish this by right-clicking on the original “hello” Label variable name,

selecting Refactor, “Convert local variable to field” and entering value_display as the field name.

Or edit it the hard way. In the end, it should look like this:

 private Label value_display;

 @Override

 public void createPartControl(Composite parent)

 {

 value_display = new Label(parent, 0);

 value_display.setText("Hello");

Now add the code to connect to a PV, using this (i.e. the HelloViewPart class) as the listener:

 try

 {

 PV pv = PVFactory.createPV("sim://ramp");

 pv.addListener(this);

 pv.start();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

There will be an error on the addListener() call because the HelloViewPart class is not a valid PVListener.

Right-click on the error light-bulb, select Quick-Fix, “Let ‘HelloViewPart’ implement ‘PVListener’”.

Developing for Eclipse/RCP/CSS

22

Next there will be an error on the HelloViewPart class because it is missing the actual implementation of

the PVListener interface. Again use the Quick-Fix to “Add unimplemented methods”.

This will add the skeleton for the methods pvValueUpdate and pvDisconnected.

Implement them like this:

 @Override

 public void pvValueUpdate(PV pv)

 {

 final String value = "PV " + pv.getName() +

 " has value " + pv.getValue().toString();

 value_display.setText(value);

 }

 @Override

 public void pvDisconnected(PV pv)

 {

 // Ignored

 }

When you now run CSS and open the Hello View, we might expect to see the “Hello” text replaced with

a text like “PV sim://ramp has value 2011/07/06 13:13 2.0”. In fact, there will be no updates. You can

close CSS again. Check the “Console” view of the IDE. There will be this type of error:

Exception in thread "ramp" org.eclipse.swt.SWTException:

 Invalid thread access

 at org.eclipse.swt.SWT.error(SWT.java:4083)

 at org.eclipse.swt.SWT.error(SWT.java:3998)

 at org.eclipse.swt.SWT.error(SWT.java:3969)

 at org.eclipse.swt.widgets.Widget.error(Widget.java:468)

 at org.eclipse.swt.widgets.Widget.checkWidget(Widget.java:359)

 at org.eclipse.swt.widgets.Label.setText(Label.java:387)

 at tutorial.HelloViewPart.pvValueUpdate(HelloViewPart.java:42)

 at org.csstudio.utility.pv.simu.BasicPV.changed(BasicPV.java:84)

Similar to most GUI toolkits (AWT, Swing, Qt,…), SWT only allows access to the user interface elements

(Label, Shell, …) from the main thread that also creates the GUI and executes the main loop. The PV

value updates on the other hand can arrive on other threads, for example an EPICS Channel Access

client thread.

Every GUI toolkit has some mechanism that allows arbitrary threads to schedule GUI updates on the

correct main thread. With SWT, you need to use the Display.asyncExec(Runnable) API. A corrected

version of the pvValueUpdate looks like this:

@Override

public void pvValueUpdate(PV pv)

{

 final String value = "PV " + pv.getName() +

 " has value " + pv.getValue().toString();

 // Perform GUI update on display thread

Developing for Eclipse/RCP/CSS

23

 value_display.getDisplay().asyncExec(new Runnable()

 {

 @Override

 public void run()

 {

 value_display.setText(value);

 }

 });

}

When you now start CSS and open the Hello view, it should display changing PV data.

You will still, however, notice a problem when you close the Hello View. Since we do not stop the PV,

our code will continue to attempt updates to our view even though the view is long gone. When exactly

this happens can vary. Eclipse will not right away delete your view classes when a user closes the view,

because after all the user may re-open the view soon. But eventually Eclipse will delete the view, and

then errors like this start to occur:

Exception in thread "ramp" org.eclipse.swt.SWTException: Widget is disposed

 at org.eclipse.swt.SWT.error(SWT.java:4083)

 at org.eclipse.swt.SWT.error(SWT.java:3998)

 at org.eclipse.swt.SWT.error(SWT.java:3969)

 at org.eclipse.swt.widgets.Widget.error(Widget.java:468)

 at org.eclipse.swt.widgets.Widget.getDisplay(Widget.java:582)

 at tutorial.HelloViewPart.pvValueUpdate(HelloViewPart.java:43)

A properly written plugin needs to clean up when it is closed. One way to do this is by adding a dispose

listener that notifies us when the view is closed.

In completeness, our view code with PV updates could look like this:

public class HelloViewPart extends ViewPart implements PVListener

{

 private Label value_display;

 @Override

 public void createPartControl(Composite parent)

 {

 value_display = new Label(parent, 0);

 value_display.setText("Hello");

 final PV pv;

 // Create and start PV

 try

 {

 pv = PVFactory.createPV("sim://ramp");

 pv.addListener(this);

 pv.start();

 }

 catch (Exception e)

 { // For tutorial, just print error

 e.printStackTrace();

 return;

 }

Developing for Eclipse/RCP/CSS

24

 // When the view is closed, stop the PV

 parent.addDisposeListener(new DisposeListener()

 {

 @Override

 public void widgetDisposed(DisposeEvent e)

 {

 pv.stop();

 }

 });

 }

 @Override

 public void setFocus()

 {

 // NOP

 }

 @Override

 public void pvValueUpdate(PV pv)

 {

 final String value = "PV " + pv.getName() +

 " has value " + pv.getValue().toString();

 // Perform GUI update on display thread

 value_display.getDisplay().asyncExec(new Runnable()

 {

 @Override

 public void run()

 {

 value_display.setText(value);

 }

 });

 }

 @Override

 public void pvDisconnected(PV pv)

 {

 }

}

Hooking into menus
To invoke our view, we have to use the generic menu Window, Show View, Other…

Most CSS views have an entry in the more obvious CSS menu, for example CSS, Utilities, Clock to open

the clock.

To add a menu, you again use Eclipse extension points, this time org.eclipse.ui.menus. The process has

actually three steps:

1. Add the GUI element entry (main menu, context menu, toolbar, …) to invoke a command. This

tells eclipse where and how to display the desired item to the user.

Developing for Eclipse/RCP/CSS

25

2. Create the command. This is an abstract description of what you want to accomplish, like “open

a view”. The same command can be invoked by many means: Menu, toolbar, keyboard shortcut,

programmatically.

3. Implement the handler. The command only describes what to do. It doesn’t do anything. A

handler performs the actual action. Eclipse allows more than one handler, and there are ways to

select which handler to use.

Overall, this separation of GUI, command, handler is very flexible, but initially it can be very confusing.

The CSS docbook chapter in Part II. Plug-in Reference, CSS menus - org.csstudio.ui.menu gives brief

examples for adding menu entries to the CSS menu.

For our purpose, we want to add an entry to the CSS Utilities menu, which has a menu path of menu:

utility. The command to open a view is actually already pre-defined by Eclipse, and so is a handler for it.

We only need to refer to the existing Eclipse command, which takes the name of the view to open as a

parameter.

In short, adding this to the tutorial plugin.xml file allows opening our view from the CSS/Utilities menu:

 <extension point="org.eclipse.ui.menus">

 <menuContribution

 allPopups="false"

 locationURI="menu:utility">

 <command

 commandId="org.eclipse.ui.views.showView"

 label="Hello"

 style="push">

 <parameter

 name="org.eclipse.ui.views.showView.viewId"

 value="tutorial.helloview">

 </parameter>

 </command>

 </menuContribution>

 </extension>

Similar to adding a view, this is not really much

code: We obviously need to add some type of

“menu” entry, specify where it should appear

(menu:utility), and what it should do

(showView, the one with ID tutorial.helloview).

The approach is very flexible. The CSS

application code defines where exactly

“menu:utility” appears and how. The main

Developing for Eclipse/RCP/CSS

26

CSS/Utilities menu entry could be moved to a different location, the name “Utility” could be renamed to

a localized text. Our plugin will still work.

At runtime, users can right-click on the CSS toolbar, select “Customize Perspective” and then disable our

menu entry if they prefer not to see it. Or they can define a keyboard shortcut if they want even faster

access to our view.

But there is certainly a steep learning curve until a developer knows all the details behind those few

lines of XML markup in the plugin.xml file to define a menu.

PV Context menu ‘Probe’
Another very powerful feature of Eclipse is the idea of menu contributions to popup (context) menues

based on the currently selected data type.

For example, “Probe” appears in the context menus of BOY widget, Data Browser channel names, … It

appears in the context menu of any CSS application that deals with process variables. When selected,

Probe will be started, receiving the PV name.

To learn about this, refer to the CSS docbook chapter in Part II. Plug-in Reference, CSS menus -

org.csstudio.ui.menu, the section called “Process Variable popup-menu”, and compare that to the

plugin.xml code of org.cstudio.diag.probe.

Look at details in org.cstudio.util.pvscript
The plugin org.cstudio.util.pvscript is very small but it includes several interesting features:

1. Online help

The tool contributes online help in a straight forward way.

2. PV Script appears in context menus for Process Variables, similar to Probe.

While Probe, however, always just creates a “Probe” entry in the context menu, i.e. one static

entry, the PV Script tool creates zero or more entries, one for each configured script.

It implements a dynamic context menu.

3. PV Script has preference settings and a preference GUI. Refer to the CS docbook Part I,

Hierarchical Preferences. Usually, preferences are simple true/false, numbers or string settings.

The PV Script util on the other hand has a complex preference: A variable-length list of script

names with descriptions. It needs to encode and decode this list from the plain string that is

stored in the preferences.

The PV Script plugin does not contain much code, so it can be a good example for studying the above
items.

Developing for Eclipse/RCP/CSS

27

Summary
In summary, Eclipse/RCP/CSS is complex but very powerful. Any attempt to learn it in “10 easy steps” is

futile. It would be like building the toy clock mentioned above.

This was supposed to show some of the ideas, and then you need to study an RCP book and examples.

Please contact me at kasemirk@ornl.gov with comments on this tutorial.

mailto:kasemirk@ornl.gov

