
Control System Studio Guide

For installers and maintainers of CS-Studio

Kay Kasemir

Gabriele Carcassi

Control System Studio Guide: For installers and maintainers of CS-
Studio
Kay Kasemir
Gabriele Carcassi

Release 2015-07(July)-21
Copyright © 2011, 2015 Oak Ridge National Laboratory

iii

Acknowledgements
Control System Studio (CS-Studio, CSS) is the result of contributions from many people:

• First of all, CS-Studio builds heavily on Eclipse.
• Matthias Clausen at the Deutsches Electronen Synchrotron started the CSS idea.
• Many people from the Canadian Light Source, Brookhaven National Laboratory, Argonne National

Laboratory, ITER and other sites have contributed either through extensions, code fixes, suggestions or
bug reports. Check the @author tags in the source code to get an idea.

The sources for this book are on GitHub under https://github.com/ControlSystemStudio/cs-studio-
docbook. You can download the sources via git clone https://github.com/
ControlSystemStudio/cs-studio-docbook.git

Thanks to Gabriele Carcassi and Eric Berryman, the latest HTML version is available at http://cs-
studio.sourceforge.net/docbook/, and the current PDF is at http://cs-studio.sourceforge.net/docbook/
css_book.pdf.

https://github.com/ControlSystemStudio/cs-studio-docbook
https://github.com/ControlSystemStudio/cs-studio-docbook
http://cs-studio.sourceforge.net/docbook/
http://cs-studio.sourceforge.net/docbook/
http://cs-studio.sourceforge.net/docbook/css_book.pdf
http://cs-studio.sourceforge.net/docbook/css_book.pdf

iv

Table of Contents
No Warranty .. x
I. CS-Studio Guide .. 1

1. Introduction .. 2
2. Control System Studio (CSS) .. 3

2.1. Example Use Case .. 3
2.2. Java, Eclipse, RCP .. 5
2.3. RCP and Control System Studio .. 7

3. Control System ... 9
4. Compiling, Running, Debugging CSS .. 10

4.1. Source Repository, Build Modules, P2 Sites ... 10
4.2. Obtaining CSS Sources .. 10

Maven OSGi Bundles .. 10
Third party ... 11
CS-Studio ... 11
Common Product ... 11
Site-Specific Products .. 11

4.3. P2 Repositories ... 12
Maven OSGi Bundles .. 12
Third party ... 12
CS-Studio ... 13

4.4. Composite P2 Repository .. 13
4.5. Tycho/Maven Build ... 14
4.6. Configuring and Invoking Maven ... 15
4.7. Using the Eclipse IDE .. 17
4.8. Prerequisites ... 18
4.9. Target Platform ... 18

Common CS-Studio Target ... 19
4.10. Import Sources Into IDE ... 20
4.11. Using Products in IDE .. 20
4.12. JUnit Tests, Headless JUnit Tests ... 22
4.13. Product Export from IDE .. 23

Command-line Products for Windows ... 24
4.14. Delta Pack, Cross-Platform Export .. 24
4.15. Feature Patch .. 25
4.16. Headless Build .. 26

5. Workspace .. 27
5.1. Selecting a Workspace ... 27
5.2. Log File ... 27
5.3. Projects, Saving Files, Default Project ... 28
5.4. Linked Folders .. 28

6. Hierarchical Preferences .. 29
6.1. Plugin Defaults: preferences.ini .. 29
6.2. Product (Site) Defaults: plugin_customization.ini .. 30
6.3. Command-line Adjustments: -pluginCustomization .. 30
6.4. End User Settings: Preference Pages ... 31
6.5. Secure Storage of Passwords ... 31

org.csstudio.sns.passwordprovider .. 32
7. Environment Variables .. 33

7.1. Max OS X ... 33
8. Console .. 35

8.1. Enabling the Console ... 35

Control System Studio Guide

v

8.2. Console Commands ... 35
8.3. Adding Commands .. 35

9. Network Usage by CSS .. 37
9.1. Windows Firewall Warning ... 37
9.2. Required Firewall Exceptions .. 37

10. Relational Database (RDB) .. 38
10.1. Supported Databases .. 38
10.2. RDB User Accounts ... 38
10.3. Network Access .. 38
10.4. RDB URLs and Schemata ... 39

11. Archive System ... 40
11.1. Relational Database Setup ... 41
11.2. Building the Tools ... 42
11.3. Archive Engine Configuration .. 42

Channel Groups .. 42
Channels .. 42
Duplicate Channels .. 43

11.4. Sample Modes .. 43
Monitored .. 43
Monitored With Threshold .. 43
Scanned/Sampled ... 44
Writing Samples to Storage ... 44
Time Stamp Checks ... 44

11.5. Editing the Configuration .. 45
SQL Manipulation ... 45
Archive Config Tool .. 45

11.6. Running Archive Engines .. 47
Engine Web Server .. 47

11.7. Archive Engine Messages ... 48
Channel skips back-in-time ... 48
Channel buffer overruns ... 48

11.8. Web-Based Archive Monitor and Editor .. 49
11.9. Viewing Data in CSS ... 49

12. Java Message Server ... 50
12.1. Apache ActiveMQ Server ... 50
12.2. Client (CSS) Configuration .. 50
12.3. Testing your Setup ... 50
12.4. Message Types .. 51
12.5. JMS logging to RDB .. 51
12.6. Viewing the Message History .. 51

13. Authentication and Authorization .. 53
13.1. Overview .. 53
13.2. Authentication ... 54

Initial User Identity .. 54
Plain Text Password File .. 54
JAAS LDAP Authentication .. 55
Adding Custom Authentication Methods .. 56

13.3. Authorization .. 56
File-Based Authorization .. 56
LDAP-Group-Based Authorization ... 57
Script-Based Authorization .. 58
Adding Custom Authorization Methods ... 58

13.4. Secure Preferences ... 58
Setting Secure Preferences .. 59

Control System Studio Guide

vi

13.5. Required Plug-Ins, User Interface ... 59
13.6. Configuring Authentication, Authorization and Secure Preferences 60

14. Alarm System .. 63
14.1. Motivation .. 63
14.2. Alarm Trigger PVs .. 63
14.3. Alarm System Behavior .. 64
14.4. Technical Overview ... 65

Alarm Tree “Root” .. 66
Multiple Parallel Alarm Configurations ... 66
“Global” Alarms ... 66

14.5. Relational Database Setup ... 66
14.6. Building the Tools ... 67
14.7. Authentication and Authorization ... 67
14.8. Alarm System Preferences ... 67
14.9. Creating New Alarm Configuration, Bulk Modifications 68
14.10. Putting it all together .. 69
14.11. Alarm Server ... 69
14.12. Alarm System JMS Message Types ... 70
14.13. Alarm Tree View ... 72
14.14. Alarm Table View ... 73
14.15. Alarm Area Panel .. 74
14.16. Annunciator .. 74

Preferences ... 75
Message Texts .. 76
Speech Systems ... 77
Active Alarms Annunciation ... 77

14.17. JMS Alarm Log ... 78
15. BOY Operator Display .. 79

15.1. Setup ... 79
15.2. Team Support ... 80
15.3. Converters .. 81

16. Site-Specific Products ... 82
16.1. Site-Specific Plugin Selection and Settings ... 82
16.2. Plug-in Dependencies ... 83
16.3. Features ... 84
16.4. Creating a Product ... 84

New Product Plug-in .. 84
Implement Application ... 85
Add Product Definition .. 85
Create applications Feature .. 86
Create core Feature .. 86
Create eclipse Feature .. 86
Fix Dependencies .. 87
Memory Settings ... 88

17. Product Intro Pages .. 89
17.1. “Welcome” Pages .. 89
17.2. Universal Intro .. 89
17.3. How to Contribute ... 90
17.4. Where to Contribute ... 91
17.5. Issues .. 91

Main Intro Screen .. 91
Cheat Sheets .. 91

18. Update Repository .. 93
18.1. Usage .. 93

Control System Studio Guide

vii

18.2. Create P2 Update Repository ... 94
18.3. Enabling P2 Updates in a Product ... 94
18.4. Version Numbers ... 95
18.5. Categories .. 95
18.6. Maintaining an Update Site ... 96

19. Localization .. 98
19.1. Externalize Source Code Strings ... 98
19.2. Message Properties Files ... 98
19.3. Test Localization in IDE ... 99
19.4. Language Codes .. 99
19.5. Externalize Texts in plugin.xml .. 99
19.6. Language Caveats .. 100
19.7. Externalize Texts in Online Help .. 100

20. Access to Data ... 101
20.1. Live Data ... 101

21. Data Exchange within CSS .. 102
21.1. CSS Data Types .. 102
21.2. Context Menu Contributions .. 102

Use or Adapt to CSS Types ... 102
Allow additions to the context menu ... 102
Contributing to context menus ... 102
Handling the invocation from a context menu ... 103

21.3. Drag-and-Drop .. 103
Drag Source, Drop Target ... 103
Common Pitfalls .. 104

II. Plug-in Reference .. 106
22. CSS Core - org.csstudio.core.feature .. 107
23. CSS Core Utilities - org.csstudio.core.util.feature ... 108
24. Logging - org.csstudio.logging .. 109

24.1. Write Log Messages ... 109
24.2. Configure the Log System ... 109
24.3. Logging to other systems .. 110

25. Security - org.csstudio.security .. 111
26. CSS menus - org.csstudio.ui.menu ... 112

26.1. The CSS main menu ... 112
26.2. The Process Variable popup-menu .. 113

27. PV Access - org.csstudio.utility.pv .. 115
27.1. Usage ... 115
27.2. Available Implementations ... 116

EPICS Channel Access ... 116
Simulated Data .. 116

27.3. Common Issues ... 117
Cannot read EPICS PVs ... 117
CA Repeater ... 117
No Implementations in Product .. 117

28. Common SWT/JFace utilities - org.csstudio.ui.util .. 118
28.1. Adapter utilities - org.csstudio.ui.util.AdapterUtil ... 118
28.2. Drag and drop - org.csstudio.ui.util.dnd .. 118

29. Opening Files from Command-Line - org.csstudio.openfile .. 120
29.1. Goal .. 120
29.2. Eclipse Launcher ... 120
29.3. Product Name .. 120
29.4. Handle SWT.OpenDocuments .. 121
29.5. Associate File Types with Handlers ... 121

Control System Studio Guide

viii

29.6. Default Command-Line Action ... 121
30. Logbook Support - org.csstudio.logbook ... 122

30.1. org.csstudio.logbook ... 122
30.2. org.csstudio.logbook.ui .. 122
30.3. org.csstudio.logbook.sns, 122

31. Message History Browser - org.cstudio.alarm.beast.msghist .. 123
32. Archive Tools - org.csstudio.archive.engine and related ... 124

32.1. org.csstudio.archive.engine ... 124
32.2. org.csstudio.archive.config ... 124
32.3. org.csstudio.archive.config.rdb .. 124
32.4. org.csstudio.archive.writer ... 124
32.5. org.csstudio.archive.writer.rdb .. 124
32.6. org.csstudio.archive.reader ... 125
32.7. org.csstudio.archive.reader.rdb .. 125
32.8. org.csstudio.archive.rdb ... 125

33. JMS Monitor - org.csstudio.debugging.jmsmonitor ... 126
34. Application Launcher - org.csstudio.navigator.applaunch ... 127

34.1. Basic Usage .. 128
34.2. Creating a new Application Launcher Configuration File 128
34.3. Examples for commands to launch .. 128
34.4. Editing an Application Launcher Configuration File 129
34.5. Application Launcher Configuration File Details .. 129

35. RDB Logging - org.cstudio.logging.jms2rdb .. 131
35.1. Relational Database Setup ... 131
35.2. Building the Tool ... 131
35.3. Running the Tool ... 131

36. Web menu - org.csstudio.ui.menu.web ... 133
36.1. Configuration .. 133

37. Chat - org.csstudio.utility.chat ... 135
37.1. Basic Usage .. 135
37.2. Sending Files .. 135
37.3. Individual Chats ... 135
37.4. XMPP Server Setup - Openfire ... 136
37.5. Chat Client Settings .. 136
37.6. Example using Pidgin ... 137

A. Docbook .. 138
A.1. Example Document ... 138
A.2. Style Sheets, Processor .. 138
A.3. Generate HTML ... 138
A.4. Generate PDF ... 139
A.5. Options ... 139

Index ... 140

ix

List of Figures
2.1. CSS Alarm Table .. 3
2.2. Context Menu .. 4
2.3. Data Browser ... 4
2.4. Electronic Logbook Submission ... 5
2.5. CSS Preference Panel .. 7
4.1. Changed Files ... 20
4.2. Locating all Product Files ... 21
4.3. Eclipse Product Editor .. 21
4.4. Product Export Dialog .. 23
5.1. Workspace ... 27
6.1. Hierarchical Preferences ... 29
9.1. Windows Firewall Warning ... 37
11.1. Archive System Overview ... 40
12.1. Message RDB Schema ... 51
13.1. Authenticate to change alarm configuration .. 53
13.2. Security Info View ... 59
14.1. Alarm System Overview ... 65
14.2. Alarm Tree ... 72
14.3. Alarm Table ... 73
14.4. Alarm Area Panel .. 74
14.5. Annunciator View .. 75
15.1. Example of BOY Widgets ... 79
16.1. Composition of a Product .. 82
16.2. Plug-in Dependency Validator ... 87
18.1. Installing from an Update Site ... 93
26.1. The CSS main menu .. 112
26.2. The Process Variable popup-menu .. 113
31.1. Message History Browser .. 123
33.1. JMS Message Monitor .. 126
34.1. Application Launch files ... 127
34.2. Configuration Editor ... 129
35.1. JMS-2-RDB Web Interface .. 131
36.1. Web menu .. 133
37.1. Chat Client (left) communicating with “Pidgin” (right) ... 135

x

No Warranty
Although the programs and procedures described in this book are meant to be helpful instruments for
building a control system, there is no warranty, either expressed or implied, including, but not limited
to, fitness for a particular purpose. The entire risk as to the quality and performance of the programs and
procedures is with you. Should the programs or procedures prove defective, you assume the cost of all
necessary servicing, repair or correction. In no event will anybody be liable to you for damages, including
any general, special, incidental or consequential damages arising out of the use or inability to use the
computer programs and procedures described in here (including but not limited to loss of data or data
being rendered inaccurate or losses sustained by you or third parties or a failure of the programs described
in here to operate with any other programs).

Part I. CS-Studio Guide
This book has two parts. The first part consists of an introduction to CSS. It explains how to compile CSS from sources,
how to install it, how to perform the initial setup of the archive and alarm system. It is meant to serve as a guide for
those who need to install, maintain and extend CSS.

The second part of the book has reference chapters for selected plugins.

For more information on Eclipse RCP, the technology underlying CSS, and CSS in general, you might also want to
refer to:

• Books
• Lars Vogel and Mike Milinkovich, Eclipse 4 RCP: The complete guide to Eclipse application development, 2013.
• Clayberg and Rubel, eclipse: Building Commercial Quality Plug-ins and the 2008 update eclipse Plug-ins were

very good, but details are now out of date.
• McAffer, Lemieux and Aniszczyk, Eclipse Rich Client Platform is a 2010 update.
• McAffer, VanderLei and Archer, OSGi and Equinox concentrates on the plugin architecture at the basis of Eclipse.

• The Eclipse IDE online help section “Platform Plug-in Developer Guide”
• Finally, a Google search often gives good results because Eclipse/RCP is used all over the world by many developers.

2

Chapter 1. Introduction
There are fundamentally two ways to look at Control System Studio (CSS): As an end user, or as a
developer and system administrator. This book is for the latter. It is organized in a way that it might help
somebody who is about to install Control System Studio (CSS) at a site. It starts with a general overview
of what CSS is, and then walks through the steps to compile pieces of CSS from source code, how to set
up an archive engine, configure an alarm server and so on.

As an end user in the control room, you should be able to simply start CSS. In your office, you might be able
to download CSS from some local web page for installation onto your office PC. In either case, the CSS
product that you get has already been pre-configured for your site. As an end user, if you have questions
about how to use CSS or some particular part of it, please refer to the online help that is accessible from
within CSS via the menu Help, Help Contents. This book may still include some useful information
about the details of a CSS installation, but the online help should be the primary source of information
for end users.

3

Chapter 2. Control System Studio
(CSS)

A first look at Control System Studio can be overwhelming. CSS is a collection of tools: Alarm handler,
archive engine, as well as several operator interface and control system diagnostic tools. Most of them deal
with Process Variables (PV), i.e. named control system data points that have a value, time stamp, alarm
state, maybe units and display ranges, but they do this in different ways. One tool displays the value of a
PV, one displays details of the PV configuration, while another concentrates on the alarm state of a PV.
Each individual tool deserves some attention, and the Experimental Physics and Industrial Control System
toolkit, EPICS, indeed offers each functionality as a separate tool. A key point of CSS is the integration
of such functionalities.

To build a control system, one would typically select certain tools, configure them, deploy them in the
control room, and then offer operators with some way of integrated access. For example, icons for the
individual tools are placed on the desktop, or a Launcher application implemented in Python/TkInter is
created to allow access to all control system tools from one top-level user interface. The same desktop
computer used to access the control system might also run an EMail application, and most sites also have
some type of Electronic Logbook, maybe with a web browser interface.

Integration of fundamentally separate tools via a Launcher still leaves you with stand-alone tools, running
in parallel. CSS offers an integrated approach that might become more obvious in the following example
scenario.

2.1. Example Use Case
Figure 2.1. CSS Alarm Table

Let's assume an operator is running the Alarm Table shown in Figure 2.1, “CSS Alarm Table”.
This application displays current alarms, and the operator notices a power supply voltage fault that
needs further investigation. The alarm table indicates that this fault was reported by the Process Variable
MEBT_CHOP:PS_2:V. Using separate tools, the operator could start a strip charting application, and
enter the PV name into that other tool to review how the voltage changed over time. There may also be
a way to copy and paste the PV name from the alarm table to the strip chart, but in any case the operator
will first have to start the strip chart application.

Control System Studio (CSS)

4

Figure 2.2. Context Menu

Enter CSS context menus: When right-clicking on the alarm under investigation in the alarm table, a
context menu opens up, see Figure 2.2, “Context Menu”. It lists entries specific to this alarm, for example
it allows the operator to acknowledge the alarm. In addition, there are links to other CSS tools, including
the Data Browser. The Data Browser is a strip-charting tool for CSS. Selecting this Data Browser entry
will open a new Data Browser plot and add the PV associated with the alarm to the Data Browser. With
CSS, the task of opening another tool, then copying and pasting a PV name or even manually entering it
has been reduced to a mouse click in the context menu!

Figure 2.3. Data Browser

In the Data Browser, the operator can now inspect the behavior of the PV over time. She might notice
that the power supply voltage indeed dropped down, causing the alarm. In addition, she can see that the
same voltage drop has occurred before, about one day ago. The operator can add annotations to the plot
to indicate the time of the current as well as previous voltage drop.

Control System Studio (CSS)

5

Figure 2.4. Electronic Logbook Submission

Eventually, the operator handles the alarm: Whatever caused the voltage to drop is understood and fixed.
Especially when a similar event has happened before, as a day ago in this example, it makes sense to add
a note to the electronic logbook, or to send an email to the engineer who maintains the power supply.
If a site that uses CSS has an electronic logbook system (ELog), for example with a web interface, one
could save a screen-shot of the Data Browser plot to a file, then go to a web browser, log into the ELog,
describe the problem, attach the Data Browser screen-shot, submit the entry. With CSS, this can again be
integrated: The context menu of the Data Browser plot directly offers a Logbook... link, see Figure 2.4,
“Electronic Logbook Submission”. When activated, a basic text entry with attached Data Browser screen-
shot is prepared. The operator can enter the text, provide the user name and password that she uses in the
ELog system, and submit the entry right from within CSS.

In summary, the whole work flow for handling an alarm that would otherwise require an operator to start
separate stand-alone applications can be integrated within CSS:

1. View Alarms in the CSS Alarm Table.

2. Open Data Browser on an alarm from within the Alarm Table.

3. Send screen-shot of Data Browser plot, with explanation, to an electronic logbook.

4. Finally, acknowledge alarm in Alarm Table.

There is no need to copy/paste PV names, there is no need to save a screen-shot as an image file, remember
the location of that file, then open another application to attach the file to an ELog entry.

2.2. Java, Eclipse, RCP
The functionality of Control System Studio (CSS) that we described in the previous example is
implemented in Java, using the Eclipse software framework, specifically the Rich Client Platform (RCP).

Control System Studio (CSS)

6

The Java programming language and runtime environment allows the creation of software that can be
used on several operating systems like Microsoft Windows, Linux and Apple Mac OS X. The same CSS
application code can thus run in the control room as well as on office computers. While the Java runtime
might in certain cases be slower than a program that was specifically created for a certain operating system
in a language like C++, the speed is usually "good enough", and there are more advantages:

• Standard library covers basic data structures (lists, hash tables, ...) as well as network communication
for all currently used protocols. No need to re-implement the wheel.

• Excellent software development tools: Debuggers, Profilers. Even without a debugger one can usually
get a meaningful stack trace from a program that appears to be hung by sending the 'QUIT' signal to
it (at least on Linux and OS X).

It is hard to imagine that a program suite as complex as CSS could have been implemented without Java.

As Java code becomes more complex, it can be split into several library files called Java Archives or 'JAR'
files. The Java runtime can dynamically load and unload these libraries. Through introspection it is possible
to locate features in such JAR files. For example, one can create a Java program that communicates with a
control system, where the specific network protocol implementation is in a JAR file. While developing or
later extending the software, a test JAR file is used to simulate a control system. For the operational setup,
a site-specific JAR file connects the software to the actual control system. The same program can be used
at different sites because the site-specific portion of the code is "plug-able".

While Java supports such dynamic binding, it does not enforce a standard way to do this. The Eclipse
software framework provides three key elements:

1. Plug-Ins: A Plug-in is fundamentally a JAR file that the Eclipse runtime can dynamically load or
also unload. Each Plug-in contains a MANIFEST.MF file that describes dependencies, i.e. which other
Plug-ins are required to load a given Plug-in. Eclipse will automatically load these other Plug-ins as
needed. The manifest file further defines which Plug-in content should be visible to other Plug-ins, and
what is only accessible to code within the same Plug-in.

2. Extension Points: A Plug-in can define interfaces called extension points. An example would
be an interface for getting data from a control system. Other Plug-ins can then implement them. The
Eclipse Registry allows Plug-ins to locate available extension points.

3. Rich Client Platform (RCP): Finally, Eclipse provides a complete application framework
that is based on extension points. The entry point of the application itself, i.e. the "main" routine of the
application, is an extension point. Items that are meant to appear in the menu bar are contributed by
Plug-ins via extension points.

An Eclipse Product combines selected plugins with configurations files and a Launcher.
Traditionally, Java products require a Unix shell script or a Windows batch file to set certain environment
variables, configure the Java CLASSPATH, and finally invoke the Java runtime. Eclipse provides each
product with a Launcher, which is an application native to the operating system. The Launcher can display
a “Splash” screen, locate the Java Runtime, configure it, and finally start the product. To the end user, an
Eclipse product thus looks just like any other application that is native to the operating system. CSS has
icon and shows up as CSS in the task bar or process list, while traditional Java programs often appeared
as shell scripts. While almost all the CSS and Eclipse Java code is fully portable across operating systems,
this Launcher is specific to an operating system.

Another part that is operating system specific is the Eclipse Standard Window Toolkit (SWT). Java itself
provides the Abstract Window Toolkit (AWT) to generate user interface code. At least in the past, AWT
had an appearance that clearly differed from the native user interface of the operating system on which a
Java application ran. The Eclipse community developed SWT, which always uses the native user interface
elements of an operating system. For example, SWT on Mac OS uses Cocoa widgets, while SWT on
Linux uses GTK widgets. The Eclipse and CSS code mostly uses SWT in a transparent way, but when

Control System Studio (CSS)

7

building a product for a certain operating system, Eclipse includes the SWT plugins that are specific to
that operating system.

2.3. RCP and Control System Studio
Control System Studio is an Eclipse RCP product, i.e. fundamentally just a collection of Eclipse Plug-ins.
In CSS, what could otherwise be a stand-alone control system application turns into a Plug-in, for example:

• Probe Plug-in: Displays value of one Process Variable
• EPICS PV Tree Plug-in: Displays the input/output link hierarchy of EPICS records, for example a calc

record's input links, which themselves might have input links and so on.
• Data Browser: Displays strip-chart type plots of Process Variable values over time

In principle, these could each be separate programs. Users would individually start and stop them as
needed. In CSS, they become Plug-ins of the CSS product. Users run CSS, then start Probe or the Data
Browser from within CSS. Just as a site integrator might choose which individual programs to install in
the control room, she can add Plug-ins to CSS or remove them from CSS based on local requirements.

As a side note, there still are individual applications: The Alarm Server, the Archive Engine are examples
for stand-alone RCP applications that use essential CSS library code, but they are nevertheless executed as
individual application instances. In the following we are concentrating on the CSS product that end users
see in the control room or on their office computers, where they typically run one instance of CSS and
inside that includes Probe, EPICS PV Tree, Data Browser and other CSS tools.

Figure 2.5. CSS Preference Panel

So what are the advantages of a combined Eclipse/CSS product over individual Java applications? For one,
the online help and preference settings of Probe, EPICS PV Tree, Data Browser and other CSS tools are
integrated. As shown in Figure 2.5, “CSS Preference Panel”, one preference panel, opened from the menu
bar under Edit/Preferences, provides access to all settings: Alarm system connectivity used by the
Alarm Table, Data Browser settings can be found under the Trends section, and also generic control
system settings like the EPICS connection parameters under CSS Core.

If the alarm plugins were removed from the CSS product shown in Figure 2.5, “CSS Preference Panel”,
the related settings would simply disappear from the preference panel. Likewise, when additional plugins
are added to the CSS product, their preference settings will appear in the panel. With standalone, pre-

Control System Studio (CSS)

8

Eclipse control system applications, the preference settings were provided via environment variables or
configuration files. Details tended to differ for each application. With CSS, the same Eclipse preference
system applies to all application plugins. More in this in Chapter 6, Hierarchical Preferences.

CSS similarly benefits from the Eclipse/RCP online help system. Whenever CSS plugins include online
help pages, these pages become part of the online help system, with global seach support.

What distinguishes CSS plugins from generic RCP plugins is the use of control system specific extension
points. CSS defines extension points for providing live or archived data, to submit text and images to
an electronic logbook. CSS application plugins can be implemented as users of these extension points.
Combined with site-specific implementations of these extension points, a product is created that will for
example get live data from EPICS Channel Access, archived data from a MySQL database, and send
submissions to an electronic logbook that keeps its data in an Oracle database.

CSS furthermore defines control system specific classes like a Process Variable. Combined with an
RCP mechanism called Object Contributions, this results in the seamless workflow between
applications described in Section 2.1, “Example Use Case”: In the Alarm Table, each line that displays
alarm information also “is” a process variable. The Data Browser is a tool that understands process
variables. It registers with Eclipse as an Object Contribution for context menues whenever a process
variable is selected. The Alarm Table code is not at all aware of the Data Browser, it simply displays a
context menu with alarm related entries like “acknowledge”. Eclipse detects that the currently selected
alarm table row also represents a process variable. Eclipse adds the Data Browser entry to the context menu,
and when the user invokes that entry, Eclipse will start the Data Browser with the process variable name.

Based on the Object Contribution mechanism, applications that deal with PV names can exchange them
without having any knowledge of each other; they remain seperate plugins, possibly implemented by
different people. When a new PV-aware plugin is added to a CSS product, it will automatically appear in
context menues of all other plugins that provide PVs.

Another feature that Eclipse/RCP offers are online updates: The CSS product can be build such that users
download it onto their office computer. When the local CSS administrator publishes software updates to a
site-specific update site, CSS will detect this on the next startup and prompt the user to update to the latest
version. Similarly, optional CSS components that only some user need can be placed on a site-specific
update site such that these users add them to their CSS product as needed.

9

Chapter 3. Control System
CSS interfaces to a control system. It is predominantly a client to the control system, reading data from
control system Process Variables. While CSS includes server tools like the Alarm Server, that in turn is
again a client to the control system.

When installing or learning to use CSS, a certain familiarity with the control system is assumed. For
example, you will need to know the names of process variables that CSS can read or write. You might
want to create new process variables that can serve as alarm triggers.

Like other control system client tools, CSS can use the meta data that comes with PVs. A PV value usually
includes not only the basic value, for example a number like 3.13, but also a time stamp, a status/severity
(OK, alarm, error), and information that display tools can use (value range, alarm limits, units). You need
to understand what meta data your control system provides, and how to configure it. For EPICS, this means
you should be able to create simple EPICS databases and execute them with the softIoc command. In
the absence of a real control system, a few initial steps with CSS will be possible by using simulated PVs
like sim://sine. See Chapter 27, PV Access - org.csstudio.utility.pv for more on PVs.

10

Chapter 4. Compiling, Running,
Debugging CSS

This chapter describes how you, as a developer, compile CSS from source code. This allows you to execute
CSS within the Eclipse development environment, where you can edit the source code and execute it in
the debugger.

End users of CSS should not have to compile CSS. In the control room, they should already find it installed.
For office use, a version of CSS that is already configured for the local site can be available on a local web
site. CSS can self-update from that same web site via the Eclipse update mechanism.

To reach that stage, somebody at each institute that uses CSS obviously needs to prepare such a local
down-load site, compile CSS with suitable settings and place the binaries on the web site. Note that in
addition to the CSS application that end users will see, a complete installation will also require you to
compile the Archive Engine, Alarm Server, tools to configure the archive and alarm system, maybe more.

4.1. Source Repository, Build Modules, P2
Sites

As the amount of CSS source code grew, it has been split into several modules. To build a CSS product
from these, there are two extreme approaches.

• Prefer local source code: You obtain the source code for each module and compile it. Then you assemble
your product from these locally created binaries.

• Prefer remote binaries: All CSS modules are already available in binary form. You can use a minimal
set of sources for just the product configuration, and fetch all the required CSS module binaries from
remote repositories.

Obtaining and compiling the complete source code is time consuming. In practice, you often use an
intermediate approach. You obtain the source code for modules that you want to investigate further, for
example to fix a bug or to add new functionality. For the remaining modules, you rely on binaries in a
remote P2 repository.

Which exact approach you use depends on your situation. You may want to configure a local Hudson/
Jenkins instance to perform a complete nightly build for your site, obtaining all the source code and
compiling it. Or you may prefer to configure your Eclipse IDE target platform to use remote P2 repositories,
then import only the source code for a site specific product and run it in the IDE. Read through the
remainder of this chapter to learn about the options and tools, then make your decision.

4.2. Obtaining CSS Sources
The complete CSS sources are in a shared GitHub repository using the GIT version control system. The
project web site is https://github.com/ControlSystemStudio.

For GIT in general, see http://git-scm.com.

Maven OSGi Bundles
• https://github.com/ControlSystemStudio/maven-osgi-bundles.git

https://github.com/ControlSystemStudio
http://git-scm.com

Compiling, Running, Debugging CSS

11

This module lists external CSS dependencies, for example MySQL client libraries or other common Java
libraries. Their binaries are fetched from online repositories outside of CSS, for example Maven central,
and they are wrapped into Eclipse bundles.

Third party
• https://github.com/ControlSystemStudio/cs-studio-thirdparty.git

This module contains sources provided by others which needed minimal additions or modifications.

CS-Studio
• https://github.com/ControlSystemStudio/cs-studio.git

This source repository contains the bulk of CSS sources. It is structured into subdirectories “core” and
“applications”, which each have further subdirectories.

Common Product
• https://github.com/ControlSystemStudio/org.csstudio.product.git

A generic CS-Studio product.

Site-Specific Products
• https://github.com/ControlSystemStudio/org.csstudio.askap.product.git
• https://github.com/ControlSystemStudio/org.csstudio.dls.product.git
• https://github.com/ControlSystemStudio/org.csstudio.ess.product.git
• https://github.com/ControlSystemStudio/org.csstudio.iter.git
• https://github.com/ControlSystemStudio/org.csstudio.nsls2.product.git
• https://github.com/ControlSystemStudio/org.csstudio.sns.git
• more ...

Many sites create a set of products that combine desired common features with site-specific additions, for
example support for a local log book or data sources.

Below is an example for fetching a complete copy of the source code. If you choose to rely on remote
binaries for all but the product, you would only perform step 4.x.

Define base URL
GH=https://github.com/ControlSystemStudio

1) Maven bundles
git clone $GH/maven-osgi-bundles

2) Third party
git clone $GH/cs-studio-thirdparty

3) Bulk of CSS sources
git clone $GH/cs-studio

Depending on your site, you would only fetch one of the following
examples, or use one that you created for your own purposes

Compiling, Running, Debugging CSS

12

4.1) 'common' product
git clone $GH/org.csstudio.product

4.2) SNS products
git clone $GH/org.csstudio.sns

4.3) NSLS2 product
git clone $GH/org.csstudio.nsls2.product

4.4) Your product?
git clone you_would_need_to_know_what_to_get

The master branch of each repository contains the most recent set of sources. For each release, there is
a numbered release branch, for example 4.0.x. New functionality and bug fixes are added to the master
branch, while the release branches are only updated for essential bug fixes.

To work on the CSS source code, i.e. to be able to submit changes, several steps are necessary:

1. Obtain GitHub account.
2. Become familiar with GIT.
3. Perform your changes on a branch or a forked repository.
4. Submit pull requests to merge your changes.

4.3. P2 Repositories
When you compile CSS sources, building each module results in a P2 repository of artifacts. Compilation
of a module typically depends on other previously created modules. For example, compiling the cs-studio
sources requires access to P2 repositories for the maven-osgi-bundles and cs-studio-thirdparty artifacts.

When you compile from sources, these P2 repositories will be created in subdirectories repository/
target/repository of your source tree. If you prefer to skip local compilation and instead use remote
repositories, these are under http://download.controlsystemstudio.org. In the following
description of remote repository URLs, note that each URL contains a version number. When working with
a relased version, the URL simply contains the version number. For the source code on the git master
branch, the URL uses the next to-be-released version number.

Maven OSGi Bundles
Local repository:

• maven-osgi-bundles/repository/target/repository

Remote repository:

• http://download.controlsystemstudio.org/maven-osgi-bundles/4.1

Third party
Local repository:

• cs-studio-thirdparty/repository/target/repository

Remote repository:

• http://download.controlsystemstudio.org/thirdparty/4.1

Compiling, Running, Debugging CSS

13

CS-Studio
Local repositories:

• cs-studio/core/p2repo
• cs-studio/applications/p2repo

Remote repositories:

• http://download.controlsystemstudio.org/core/4.1
• http://download.controlsystemstudio.org/applications/4.1

The CS-Studio sources are split into core and applications, which each result in their own repository.

The Eclipse IDE as well as each CSS product contain the P2 Director application which can be used to
list the content of a repository:

Use either the Eclipse IDE or a CSS product.
Both should include the Equinox launcher
plugin which in turn contains the P2 director
export APP_PLUGINS=/path/to/my/eclipse

DIRECTOR="java \
 -jar $APP_PLUGINS/plugins/org.eclipse.equinox.launcher_*.jar \
 -debug -consolelog \
 -application org.eclipse.equinox.p2.director"

List content of a remote repository.
$DIRECTOR -list -repository http://download.eclipse.org/releases/luna/

List content of a local repository.
Path needs to start with 'file://' and be absolute.
$DIRECTOR -list -repository \
 file://path/to/maven-osgi-bundles/repository/target/repository

4.4. Composite P2 Repository
Assembling a product typically requires artifacts from maven-osgi-bundles, cs-studio-
thirdparty, cs-studio/core, cs-studio/applications and maybe locally created site-
specific additions.

A composite P2 repository is simply a list of other P2 repositories. It can list local as well as remote
repositories, which is useful because you typically need to use a combined approach. For example, you
may want to use remote repositories for maven-osgi-bundles and cs-studio-thirdparty,
but prefer locally created artifacts for the rest.

To create a composite repository, create a directory my_comp_repo in the same directory that also
contains the previously cloned source modules with the following two files:

<!-- File my_comp_repo/compositeContent.xml -->
<?xml version='1.0' encoding='UTF-8'?>
<?compositeMetadataRepository version='1.0.0'?>
<repository name='Local Composite Repository'
type='org.eclipse.equinox.internal.p2.metadata.repository.CompositeMetadataRepository'
 version='1.0.0'>

Compiling, Running, Debugging CSS

14

 <properties size='1'>
 <property name='p2.atomic.composite.loading' value='false'/>
 </properties>
 <children size="4">
 <child location="http://download.controlsystemstudio.org/maven-osgi-bundles/4.1"/>
 <child location="http://download.controlsystemstudio.org/thirdparty/4.1"/>
 <child location="../cs-studio/core/p2repo"/>
 <child location="../cs-studio/applications/p2repo"/>
 </children>
</repository>

<!-- File my_comp_repo/compositeArtifacts.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<?compositeArtifactRepository version='1.0.0'?>
<repository name="Local Composite Repository"
type="org.eclipse.equinox.internal.p2.artifact.repository.CompositeArtifactRepository"
 version="1.0.0">
 <properties size="0">
 </properties>
 <children size="4">
 <child location="http://download.controlsystemstudio.org/maven-osgi-bundles/4.1"/>
 <child location="http://download.controlsystemstudio.org/thirdparty/4.1"/>
 <child location="../cs-studio/core/p2repo"/>
 <child location="../cs-studio/applications/p2repo"/>
 </children>
</repository>

In this example, we depend on remote repositories for maven-osgi-bundles and cs-studio-
thirdparty, while using locally created artifacts for the rest. For local child locations, entries starting
in file:/ refer to the root directory and need to be absolute. The child locations in the example refer
to locations relative to the XML files.

For further examples, check the core/p2repo or applications/p2repo which themselves are
composite repositories.

The p2.atomic.composite.loading controls how missing child locations are treated. Setting it
to true will check if all listed child locations contain valid repositories. This can be used to test the
correctnes of the composite repository settings. On the other hand, when we start out fresh and compile the
cs-studio/core module, the cs-studio/applications/p2repo will not exist, yet, because
it is generated in a later step, so we need to set p2.atomic.composite.loading to false.

4.5. Tycho/Maven Build
Maven is a generic build tool for Java. It uses pom.xml files to define how a piece of software
needs to be compiled, and to list its dependencies. Eclipse plugin sources already include META-INF/
MANIFEST.MF files for almost the same purpose. Tycho, a support module for Maven, allows Maven
to re-use the existing Manifest files to compile Eclipse source code.

From now on, we will refer to the Tycho/Maven Build as simply the Maven Build. To build CSS from
sources with Maven, you need

• Sources: The sources you want to compile. Obtain them from Github as described earlier in this
chapter. You only need to fetch those sources that you want to compile.

• java: A Java Development Kit (JDK) is necessary to compile the sources. It should be the JDK, not just
a Java Runtime Environment (JRE). It should be the Sun/Oracle JDK. OpenJDK, the GNU Compiler

Compiling, Running, Debugging CSS

15

for the Java (GCJ) and other environments are currently not fully compatible with the Sun/Oracle JDK.
Google for “Oracle JDK”.

• mvn: Maven. See http://maven.apache.org.

Add the desired version of Java to the JAVA_HOME environment variable as well as the PATH:

export JAVA_HOME=/path/to/the/jdk
export PATH=$JAVA_HOME/bin:$PATH

Verify that Maven is using the desired version of Java. Note that the first Java found on your $PATH may
not be what Maven uses because it checks $JAVA_HOME. Verify by checking the output of

mvn -version

4.6. Configuring and Invoking Maven
When obtaining the Maven Build tools and CSS sources, you may have noted that we fetched neither
Tycho nor Eclipse. The beauty of Maven is that it will download all dependencies, including Tycho and
Eclipse, and work like a charm as long as it feels like doing so. The horror of Maven is that it always
appears to download the internet. When the commands listed in the following instructions are run for the
first time, Maven will initially download Tycho. It will place Tycho in a local Maven repository, typically
under ~/.m2/repository. Subsequent calls will not require a complete download, but Maven will
continue to check remote sites for updates, even when invoking a simple mvn clean command.

Note: If you have used Maven on a previous project, you may be familiar with executing it as mvn
install. This will compile the source code and place the results in the local Maven repository. For
compiling CSS, this is not recommended. Do not invoke the Maven install command, because this
will result in version conflicts between artifacts that Maven then installs in its local repository and the
current sources of CSS. Instead, we use mvn verify, and the generated CSS binaries are placed in the
previously described local P2 repositories within the source tree.

If you do not further configure Maven, all CSS compilation will default to using remote repositories. For
example, if you only obtained the source code for the common CSS product, the following will build it,
obtaining all required depdendencies from remote repositories which are configured in the pom.xml files
of the product:

Compile common product
(cd org.csstudio.product; mvn clean verify)

As you develop CSS, you might prefer to download more of the source code so that you can inspect and
maybe modify it. You then configure a composite repository that lists your locally created repositories,
based on locally edited sources, over the remote repositories. To configure Maven to use your composite
repository as well as additional settings, create either a global file $M2_HOME/conf/settings.xml,
or in a user-specific file $HOME/.m2/settings.xml. You could also specify the properties listed in
this file on the command line, invoking Maven as mvn -Dcsstudio.composite.repo=.., but to
assert consistency are best placed in a /.m2/settings.xml file based on the following example:

<!-- Maven settings.xml -->
<settings>
 <profiles>
 <profile>
 <id>my-css-settings</id>
 <properties>
 <!-- Optionally, configure a composite repo.
 By default, the Maven build will fetch all
 depenencies from remote repositories.

http://maven.apache.org

Compiling, Running, Debugging CSS

16

 In your composite repository, you can list
 local repositories.
 -->
 <!-- Path to your composite repo -->
 <csstudio.composite.repo>/path/to/my_comp_repo</csstudio.composite.repo>

 <!-- By default, even if you use a composite repo
 that lists local P2 sites,
 Maven will still consult the remote CSS repos.
 Setting this property DISABLES downloads from
 http://download.controlsystemstudio.org,
 so you use _only_ sites listed in your composite repo.
 If you still want to use selected entries from
 http://download.controlsystemstudio.org,
 you can list them in your composite repo.
 -->
 <cs-studio>dummy_value</cs-studio>

 <!-- Ignore artifacts in ~/.m2/repository/p2,
 which some other "mvn install" may have placed
 there.
 -->
 <tycho.localArtifacts>ignore</tycho.localArtifacts>

 <!-- Issue warnings instead of aborting on error -->
 <baselineMode>warn</baselineMode>
 <jgit.dirtyWorkingTree>warning</jgit.dirtyWorkingTree>

 <!-- Skip unit tests -->
 <maven.test.skip>true</maven.test.skip>
 <skipTests>true</skipTests>

 </properties>
 </profile>
 </profiles>

 <!-- Enable the above settings -->
 <activeProfiles>
 <activeProfile>my-css-settings</activeProfile>
 </activeProfiles>
</settings>

To verify that your Maven setup uses the properties as you define them in your settings file, you can use
these commands in any of the CSS source tree locations that contain a Maven pom.xml:

Should list "my-css-settings"
(cd maven-osgi-bundles; mvn help:active-profiles)

In the long output, locate the <properties> and
verify they include what you entered in settings.xml
(cd maven-osgi-bundles; mvn help:effective-pom)

Finally, to build CSS from sources, run Maven like this:

To start fresh, clean your local repository
If you have accidentally invoked

Compiling, Running, Debugging CSS

17

mvn install
or want to assert that you start over fresh,
delete the Maven repository:
rm -rf $HOME/.m2/repository

If you want to compile the maven-osgi-bundles
and listed its local repo in your composite repo,
do it.
Otherwise skip this step, and use the only repo
for this module.
(cd maven-osgi-bundles; mvn clean verify)

Similarly, compile cs-studio-thirdparty unless
you prefer to use its binaries from a remote repo.
(cd cs-studio-thirdparty; mvn clean verify)

If you want to compile core, ..
(cd cs-studio/core; mvn clean verify)

If you want to compile applications, ..
(cd cs-studio/applications; mvn clean verify)

Compile desired products
(cd org.csstudio.product; mvn clean verify)
or:
(cd org.csstudio.sns; mvn clean verify)
or:
(cd org.csstudio.nsls2.product; mvn clean verify)

After the last step, the created products can be found in the following locations, depending on which
products you built:

org.csstudio.product/repository/target/products
org.csstudio.sns/repository/target/products
org.csstudio.nsls2.product/repository/target/products

Most products also create a P2 update repository from which the generated product can install optional
features, for example

org.csstudio.sns/repository/target/repository

After changes to the source code, you do not need to recompile everything. If you change for example code
under cs-studio/applications/logbook, you can build only that sub-module of applications
via

(cd cs-studio/applications/logbook; mvn verify)

4.7. Using the Eclipse IDE
Fundamentally, using the Eclipse Integrated Development Environment (IDE) for CSS development is
easy:

1. Get Java and Eclipse
2. Get the CSS source code
3. Start Eclipse, import the sources
4. Open the *.product file for CSS, ArchiveEngine, ... and launch it.

Compiling, Running, Debugging CSS

18

The IDE allows you to run the products in debug mode, setting breakpoints, examining the source code.

Once the product is acceptable for use at your site, you can export it from the IDE and install the result
on the desired computers.

4.8. Prerequisites
You need

• Java Development Kit (JDK) as described in Section 4.5, “Tycho/Maven Build”.
• “Eclipse IDE for RCP and RAP Developers”. See https://www.eclipse.org/downloads.
• Desired source code from GIT repository as already described in Section 4.2, “Obtaining CSS Sources”.

Both the JDK and the RCP IDE need to be a specific version, ask other CSS developers for the currently
supported versions.

Start the Eclipse IDE, and assert that it uses the JDK:

• Open the Preferences menu item. It is usually in the Windows menu, except for Mac OS X which
offers it in the Eclipse menu.

• Locate entry Java, Installed JREs.
• Assert that your JDK is listed and selected, otherwise use Add to add it, then select it as the default.

The Eclipse 4.4 (Luna) IDE includes Maven support, but it will report errors on each pom.xml because
it does not understand the Tycho commands which Maven self-installs on its first run. For the most part
you can ignore these errors, or add Tycho support to the IDE:

• Open the Preferences menu item.
• Locate entry Maven, Discovery.
• Press Open Catalog, enter tycho, select the Tycho Configurator.
• Press Finish and restart Eclipse when prompted.
• After the restart, you should find the Tycho Configurator listed under the menu Help,
Installation Details, Installed Software.

The IDE may still not understand all the maven commands found in the pom.xml. This is not a problem,
because several commands are only meant for maven execution outside of the IDE. To ignore such errors:

• Open the Preferences menu item.
• Locate entry Maven, Error/Warnings.
• Select Ignore for Plugin execution not covered by lifecycle configuration.

4.9. Target Platform
Even if you import the complete CSS source code into the Eclipse IDE, you still need certain external
dependencies that are not included in the source code. The Maven Build obtains external resources from
online repositories listed in the pom.xml files. While the Eclipse IDE reads the pom.xml files to some
extend, it will not fetch external resources.

An Eclipse Target Platform lists a set of plugins that the IDE uses when compiling source code.
By default, the target platform of the IDE includes only the IDE itself. For CSS development, you need
a target platform that includes the following:

• Correct version of the IDE. At times, CSS source code might be locked to a specific version of Eclipse.
Your IDE may be the “latest”, newer than the version required for CSS sources, because your target
platform provides the Eclipse plugins required to compile CSS.

https://www.eclipse.org/downloads

Compiling, Running, Debugging CSS

19

• External dependencies. While the Maven build fetches these based on information in the pom.xml
files, the IDE requires them to be included in the target platform.

• Binaries for the CSS source code. This is optional, but if your target platform contains all the CSS
binaries, you no longer need to import the complete CSS source code into the IDE. Instead, you can
import only the sources which you want to study or extend. The IDE will favor source code that you
have imported over the corresponding binaries in the target platform, so you can continue to import
more source code as required.

Common CS-Studio Target
You are encouraged to use the target configurations included in the CSS sources. By using these, other
developers will be able to reproduce your setup, help with problems, and everybody should get the same
results:

• Obtain a copy of the cs-studio repository.
• In the Eclipse IDE, invoke the menu File, Import, General, Existing Projects into Workspace.
• For the root directory, navigate to the folder cs-studio/build/target-files.
• Once the project is imported, check the *.target files.
• Open for example the target-dev file, which will display it in the Target Editor.
• Wait until the background operation “Resolving Target Definition” completes. When opening the target

for the first time, this will take several minutes, because it downloads the remote repositories.
• There can be errors because some remote repositories are not accessible. In the Target Editor, you can

select the locations that indicate errors and use the Update button to re-try. We have seen cases where
some artifacts failed to resolve, but these were not essential for building CSS and could be ignored.

• Press Set as Target Platform.

Once you set a target platform, all work within the IDE uses local copies of the retrieved artifacts.

The development target, target-dev, is meant for working on the most recent source code from the git
master branch. These sources change. If you are already importing most of the CSS source code into
your IDE, you have those updates available. On the other hand, if you only import a few selected source
modules and depend on the target to provide the rest, you might want to periodically update your target
to fetch the latest binaries.

Target platform definitions for released branches are expected to be stable.

Local Target: Result of Maven Build
While this is not the suggested setup, once you completed the Maven Build from the command line as
described earlier in this chapter, you can use that as your target platform.

• Open the menu Preferences, Plug-in Development, Target Platform.
• Select Add, then the option to base the new target on the Default.
• Enter a name, for example “IDE and Local”.
• Add a Directory. Browse to the repository/target/repository of your product build

tree, or to the actual binary product which has a plugins subdirectory.
• Press Finish, and assert that your new target platform is selected as the active one.

This option has the advantage that your IDE target platform contains only locally available plugins,
avoiding the sometimes problematic resolution of remote dependencies.

On the downside, this approach requires you to first build everything from sources using the Maven
command line. The resulting target will only contain those artifacts that were required to build a specific
product.

Compiling, Running, Debugging CSS

20

4.10. Import Sources Into IDE
You only need to import the sources on which you want to work. For example, you can import just the
product sources, then start the product within the IDE. All its dependencies, for example required cs-
studio/core plugins, will be obtained from the target platform.

If you want to work on plugins from cs-studio/applications or cs-studio/core, you can
later import them as needed.

To import the desired sources into the IDE:

• In the IDE, select the menu File/Import..., Maven, Existing Maven Project.

• As a root directory, you generally select the top-level directory as it was cloned from GIT, for example
the org.csstudio.product directory. For the cs-studio source tree, select either the cs-
studio/core or cs-studio/applications subdirectory, or a specific sub module like cs-
studio/applications/logbook.

• Check the option Add Projects to Working Set and enter a suitable name.

• Press Finish.

• After waiting a little while, you likely need to reset the sources to their original state as described below
because Eclipse will update .classpath files, see below.

In the Eclipse Package Explorer, select the view drop-down menu Top Level Elements and
pick Working Sets.

The IDE should now compile the imported sources. There should be no compilation errors. If there are,
check that the Eclipse Maven support has not changed the compilation settings. At least with Eclipse 4.4 it
tends to update the .classpath files to match IDE settings. In Figure 4.2, “Locating all Product Files”,
note that the package org.csstudio.trends.databrowser2 has a greater-than sign in front of
its name. This indicates that the source code has changed from the original version obtained from Git.
When comparing against the HEAD Revision, you will find a modified .classpath file. The easiest
way to restore the files to their original state, reverting those changes applied by the IDE: Select the top-
level directory within the working set, for example the core directory within the working set of the same
name. On its context menu, invoke Team, Reset, and select the option to reset Hard. The IDE should
automatically recompile, this time without errors.

Figure 4.1. Changed Files

4.11. Using Products in IDE
Open one of the *.product files, for example

org.csstudio.product/repository/cs-studio.product

or

Compiling, Running, Debugging CSS

21

org.studio.sns/repository/basic-epics.product

You can use the Eclipse Search, File menu to locate all available product files as shown in Figure 4.2,
“Locating all Product Files”

Figure 4.2. Locating all Product Files

When you open an Eclipse product file, it will be displayed as per Figure 4.3, “Eclipse Product Editor”.
In the Overview tab, first press Synchronize, then press Launch an Eclipse Application
to run the product from within the IDE. The product should start up.

Figure 4.3. Eclipse Product Editor

Compiling, Running, Debugging CSS

22

When running a product from within the IDE for the first time, the main goal is that the product should
start. It may then stop because of missing command line arguments, but there should be no errors regarding
missing plugins or compilation problems.

The product may not start up, instead reporting errors like “Productcould not be found” or “Missing
required bundle ...”, even though the Maven Build resulted in a product that starts without errors. This
results from the Maven Build automatically including required plugins, while the IDE expects each plugin
that you want to include in the product to be listed in the product file or its features.

Ideally, all products would include their dependencies such that the same product file can be used
by the Maven build as well as the IDE without changes. Meanwhile, you can invoke the menu Run,
Run Configurations... Locate the configuration for the product, open its “Plug-ins” tab. Press
Validate Plug-Ins to identify unresolved plugins, i.e. missing dependencies. Either manually add
the plugins that were reported as missing, or try the Add Required Plug-ins button to add them
automatically. While the Add Required Plug-ins button is easier to use than the manual approach,
it tends to overzealously add test fragments to the procuct which are not actually required.

In the case of the command-line products like the Alarm Server it might soon exit with an error message
indicating that it requires command-line arguments. It is of course trivial to provide command-line
arguments when invoking such tools as intended from the shell. During development and initial testing,
though, it can be more convenient to execute CSS products from within the IDE. To add command-
line arguments to products executed in the IDE, invoke the menu Run, Run Configurations...
Locate the configuration for the product, open its “Arguments” tab. The “Program Arguments” section
may already contain entries like -os ${target.os}. Add your desired command-line arguments to
the end of the program arguments.

Once you get the product to run: Congratulations! Almost as easy as running the product is debugging
it: Instead of running the product again from the menu Run, Run History, you select Run, Debug
History to start the product in debug mode. You can browse the source code, set breakpoints by double-
clicking at the start of a source line, then step through the code from the breakpoint on.

4.12. JUnit Tests, Headless JUnit Tests
The Eclipse IDE has good support for executing JUnit tests and test-driven development in general. You
can start many programming tasks by first implementing the JUnit test, using the IDE “Quick Fix” feature
to create skeletons for the required classes and interfaces, which you then fill with the actual code until
the test passes.

You will find several JUnit tests in the CSS plugin code because a lot of it was implemented in a test-
driven fashion. These classes are often found in a test/ source folder, and the source files will be named
*Test.java or *Demo.java.

To execute a JUnit test, you simply right-click on the class file in the Project Navigator and select Run As,
JUnit Test. Some tests will need configuration files to specify database URLs or other site-specific
parameters. Refer to comments in the source code for details.

Eclipse supports a special type of JUnit test to allow testing within the Eclipse runtime environment. This is
necessary for tests that depend on the Eclipse plugin registry and preference system. Tests that require the
plug-in runtime should be in source files named *PluginTest.java or *HeadlessTest.java.
To execute them, select Run As, JUnit Plug-in Test from the file context menu.

When you invoke such a JUnit Plug-in Test for the first time, the IDE will create a run configuration that
loads all the plugins found in your workspace. If the plugin containing your test refers to Eclipse user
interface plugins, the plugin test configuration will in addition start an instance of the complete Eclipse

Compiling, Running, Debugging CSS

23

IDE with all your workspace plugins, then execute the test. This can take a long time and be overkill for
what you want to test.

A “Headless” plugin test is a test that requires the Eclipse plugin runtime environment but not the complete
IDE user interface. Such test source files are typically named *HeadlessTest.java. To invoke such a
test, you can once execute it via Run As, JUnit Plug-in Test to create the basic run configuration,
but then you should edit it as follows:

• Menu Run, Run Configurations...

• Locate the JUnit Plug-in Test that was created for your headless test.

• On the Main tab, select Run an application with the option [No Application] -
Headless Mode.

This will significantly reduce the startup time of your test because you avoid a copy of the Eclipse IDE.

• In the Arguments tab, you might need to add a program argument -pluginCustomization /
path/to/your/settings.ini if your test needs certain preference settings.

• In the Plug-ins tab, by default all plugins in your workspace will be included. You can change that
to only include selected plug-ins, which can reduce the startup time and might also be necessary to test
the behavior of your test in case it depends on certain other plugins being available or not.

4.13. Product Export from IDE
End users of CSS cannot be expected to open the IDE, install the source code, and then run CSS from
within the IDE. They need a product that executes from their “start” menu or a desktop link. The preferred
way to create standalone products is via the Maven Build described earlier in this chapter, because that
results in a complete set of products for all target architectures. Occasionally, however, it can be faster to
create a single standalone product for testing by “exporting” the product from the IDE.

Figure 4.4. Product Export Dialog

To export a product, open the product file that was already shown in Figure 4.3, “Eclipse Product Editor”
and press the Eclipse Product export wizard link in the Overview tab. This will open the
Eclipse product export dialog, see Figure 4.4, “Product Export Dialog”, where you enter the following:

1. As a Root Directory, enter the name of the product, for example ArchiveEngine, CSS, ... You could
include a version number, for example MyCSS-4.0.

Compiling, Running, Debugging CSS

24

Use only a directory name, no path! This is the name of the directory that will contain the generated
executable and associated files.

2. Enter a Directory path where the exported product should be placed, for example /usr/fred/CSS/
bin

Enter a full path for this option! In the end, the name from the previous option will be appended to
this directory path, so your product will end up in a directory similar to /usr/fred/CSS/bin/
MyCSS-4.0.

Also assert that the directory that you selected is empty! When you export a product into a directory
that already contains a product, maybe an older version of the same product, Eclipse will attempt to add
the new code to the existing content, similar to an online update of an existing product. That is probably
not what you want, so export into a an empty directory.

3. You might want to un-check the option to “Generate metadata repository”
4. Finish

You should now have a directory like /usr/fred/CSS/bin/MyCSS-4.0 that contains a css
executable. You can copy that directory to other computers and run it there. One method of deployment
would be to offer a ZIP file of the exported product on a web page.

If you left the option to “Generate metadata repository” checked, Eclipse will generate also an update
repository, see Chapter 18, Update Repository.

Command-line Products for Windows
Command-line applications, in Eclipse called “headless” RCP applications, are invoked from a terminal
window, i.e. the Linux shell, Mac OS X terminal, or Windows Command Prompt. They are configured
via command-line arguments, and they print information to the terminal.

Note that there is currently a limitation for command-line products on Windows! Headless RCP
applications work fine on Linux and Mac OS X, but in the Windows command line tool cmd.exe you will
by default not see any output from headless RCP applications. The problem is related to the fact that Java
for Windows includes both javaw.exe and java.exe because Windows distinguishes between GUI
and console applications. javaw -version invoked in cmd.exe will not display any output, either.

Eclipse for Windows likewise includes launchers eclipse.exe and eclipsec.exe. Headless
products like an ArchiveEngine, AlarmServer etc. should use eclipsec.exe as their launcher,
but there is currently no way to specify this in the product configuration, see also the bug report on “Support
for exporting eclipsec.exe in RCP apps”, https://bugs.eclipse.org/bugs/show_bug.cgi?id=185205.

For the time being, the only solution is to manually replace the generated launcher, for example
AlarmServer.exe, with a copy of eclipsec.exe:

copy \path\to\eclipsec.exe AlarmServer.exe

After replacing the original executable with a copy of eclipsec.exe, you can invoke the
AlarmServer.exe from within the Windows Command Prompt, and you will see its command line
output inside the Command Prompt window. If you start the AlarmServer.exe via double-clicks from
the Windows Explorer, i.e. not from within a Command Prompt, it will actually open a new Command
Prompt in which it can then display command line output.

4.14. Delta Pack, Cross-Platform Export
The product that you export from the IDE is by default limited to the operating system on which it was
exported because of the OS-dependent launcher and SWT libraries, see Section 2.2, “Java, Eclipse, RCP”.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=185205

Compiling, Running, Debugging CSS

25

To export code for different platforms, you need the Eclipse “Delta Pack”. With the Delta Pack installed,
Eclipse on OS X can for example build products for Windows, Linux, and OS X. Same for Linux and
Windows.

To obtain the delta pack:

1. Goto the Downloads section on http://www.eclipse.org/.

2. Select “Projects”, “Eclipse Project”.

3. Select the version of Eclipse that you are using, for example 4.4.

4. Locate the Delta Pack, a file like eclipse-4.4-delta-pack.zip.

To use the delta pack:

1. Extract the delta pack archive into its own directory on disk. The result should be an eclipse directory
with sub-directories plugins and features

2. Open the Target Platform preferences: Menu Preferences, Plug-in Development, Target
Platform.

3. Edit the active target. Add an “Installation”, using the path to the delta pack's eclipse directory.

When you now export a product from the IDE, there will be a new option “Export to multiple platforms”.

4.15. Feature Patch
A side effect of the headless build and a P2-managed product is that it is no longer possible to simply
replace plugins in a product with new versions. If you replace a plugin JAR file with a different version,
even if the names exactly match, P2 will recognize the change because of checksums. It will refuse to load
the modified plugin, because it was part of the original configuration. In the spirit of maintaining a well
defined product with known content, this makes sense. Occasionally, however, it is a big nuisance: Fixes
to small bugs are no longer possible via basic plugin updates. Instead, you have to create a new product
by incrementing all version numbers, perform a complete headless build, then publish the new product
and its repository on the update site.

A feature patch can be used to update only part of a product while maintaining full configuration
control. Assume our current product contains a plugin org.csstudio.trends.databrowser2
with version number 3.0.1 that we intend to replace with a newer version 3.0.2. We need to determine
which feature provides that plugin in the product-to-update, and we need to determine its exact version,
including a possible date/time qualifier. If you do not know which feature provided the original plugin,
search the files in the features subdirectory of the installed product. Assume we find that the plugin
was provided as part of the feature

org.csstudio.trends.databrowser2.feature_3.0.1.20110715

Create a new Feature Patch project in the Eclipse IDE:

• As a project name you can for example use “databrowser3.0.1.patch”.

• In the “Properties of feature being patched” section of the project wizard enter the “Feature ID” of the
original feature, i.e. org.csstudio.trends.databrowser2.feature.

• Under “Feature Version” be sure to enter the correct version that you intend to update, i.e.
3.0.1.20110715.

• Add the plugins that should be updated with the patch, i.e.
org.csstudio.trends.databrowser2. The feature that we are patching might contain many
more plugins, but in the patch we only include what we want to add or replace. Assert that the version
numbers of all the plugins that you want to replace have been incremented from their installed version.

http://www.eclipse.org/

Compiling, Running, Debugging CSS

26

You can now export the feature patch, using an archive file like databrowser3.0.1.patch.zip
as the target, and then use that ZIP file to install the patch into your product via the menu item Help,
Install New Software... by adding the ZIP file to the available software sites.

As a result, the original org.csstudio.trends.databrowser2 plugin is replaced with the new
one, while P2 remains fully aware of what version of which plugin was installed from where, so it will for
example allow you to un-install the patch, or later add additional feature patches.

4.16. Headless Build
The Headless Build is similar to the Tycho/Maven Build, but using older tools. Originally, it was the
standard way to compile CSS source code from the command line, for example as part of nightly builds.
It has been replaced by the Tycho/Maven Build.

27

Chapter 5. Workspace
Eclipse products use a “Workspace”. This is a directory that stores your configuration files and settings,
allowing Eclipse to start up in the same state as you left it when it was running the last time. You can only
run one instance of Eclipse for a selected workspace.

Figure 5.1. Workspace

In the previous chapter, we already used the workspace within the IDE. We described the relationship
between the actual location of CSS plugin source code and the way these plugins appear in the IDE.
Figure 5.1, “Workspace” shows the similar relationship between the workspace of a CSS end-user and the
actual file system directory. Directories and files in the workspace directory are visible in the Navigator
view, for example display files or Data Browser configuration files. Double-clicking on these files
will open them. The actual workspace location and name of the workspace, i.e. the /path/to/my/
Workspace in the example, is usually hidden from the end user. Likewise, the .metadata directory
where Eclipse stores user preferences, the current location of windows etc. are hidden from the user so
that she can concentrate on just the files of interest like display files.

5.1. Selecting a Workspace
Every Eclipse RCP application allows you to set the workspace when starting the product from the
command-line via the -data option:

the_css_product -data /path/to/my/Workspace

Most products also offer a menu item File, Switch Workspace... that displays the current
workspace location in the file system and allows you to select a different one.

Some products like the Eclipse IDE and the SNS version of CSS have a startup dialog that prompts users
for the workspace.

5.2. Log File
One important file within the workspace is .metadata/.log. Note the leading dot on both the metadata
directory and the log file which makes this a hidden file on Linux and Mac OS.

This file contains Eclipse log messages. In case of problems it is often useful to look for error indications
in the log file. When you start the product with the folloing command-line option, you will also see log
messages on the console:

the_css_product -consoleLog

Workspace

28

5.3. Projects, Saving Files, Default Project
The top-level elements of a Workspace are called “Projects”. They can be created via the menu File,
New....

Each workspace must have at least one such project, because otherwise you cannot save any files. Many
versions of CSS therefore create a default project called “CSS” in case it does not exist already when CSS
is started up.

5.4. Linked Folders
Projects and sub-folders of a project in a user's Workspace are private to that user. If you want to share
configuration files with other CSS users, for example use common operator interface panels or Data
Browser configurations, you can link to shared folders in the file system.

To manually create a linked folder:

• Open the Navigator view.
• Right-click on an existing project or folder.
• Select New..., Other..., General, Folder, press Next.
• Enter the desired folder name, but do not press Finish, yet!
• Press the Advanced... button to select a “Link to alternate location (Linked Folder)”, browsing to

the desired location outside of your workspace.
• Now press Finish.

Linked folders can also be generated via command-line options. This allows sites with a shared file system
to automatically include suitable links to these shares in every CSS workspace by invoking CSS from a
script with the following option:

-share_link /var/x/y=/CSS/Share,/var/x/z=/Project/Folder/Link

The -share_link option takes one or more comma-separated values. Each value is of the form
path=resource. The “path” represents a path to a folder in the file system, and “resource” is the
resource to create within the workspace. If they include spaces, the file system path and resource must
each be enclosed in double-quotes.

Examples:

-share_link /path/to/share: If only the file system path is provided, the resource defaults to
“/CSS/Share”, i.e. a linked folder “Share” within the project “CSS” will be created that links to /path/
to/share in the file system.

-share_link /path/to/share,"/path/to/an other"=/MyProject/Other/Share:
As before, and in addition a project “MyProject” will be created with folder “Other”, and finally a linked
folder “Share” is created within that folder which points to /path/to/an other in the file system.
The file system path must be enclosed in double-quotes because it contains a space.

Note that linked folders in the workspace behave similar to symbolic links in the Unix file system. If the
file system path is not valid, the linked resource is still created but will appear empty. When opening its
properties, the location will be marked as “Does not exist”.

29

Chapter 6. Hierarchical Preferences
Once you are able to start a CSS product, you need to configure it. For example, to run the archive engine,
you need to specify where it should write data. Likewise, the CSS Data Browser needs to be configured to
read the archived data from that location. These settings are site-specific, they cannot be included in the
source code. The local CSS administrator should be able to configure these settings so that local end users
of CSS can simply open the Data Browser without having to adjust the archive data source settings. Other
settings might have useful defaults, but end users may still prefer to adjust them to their liking.

Eclipse has a preference system that allows each plugin to provide default settings. The builder of a product
can then add site-specific settings, and finally the users are able to adjust them individually for their
instance of CSS.

Note that the following is a technical view of preference settings: How they are originally defined and then
adjusted on several levels. This is the information that CSS developers need. As an end user, you might
want to read this from the back, jumping right away to Section 6.4, “End User Settings: Preference Pages”.
As somebody who downloaded some generic version of CSS and wants to provide all the settings for your
site, you would follow Section 6.3, “Command-line Adjustments: -pluginCustomization”.

Figure 6.1. Hierarchical Preferences

6.1. Plugin Defaults: preferences.ini
Each plugin with configurable settings should have a file preferences.ini in its root directory. This
file has several purposes:

• It defines those settings, i.e. their name.
• It documents their meaning, explaining supported values.
• It establishes the default value for each setting.

For example, such a file can be:

Example preferences.ini for plugin org.csstudio.demo

Enable the super feature.
Set to 'on', 'off' or 'automatic' which enables it whenever possible
enable_super=automatic

URL of server where the super feature connects
url=http://localhost/superdata

The Eclipse preference service for a plugin will automatically use such a file as long as it has the correct
name and is located in the plugins root directory. So for a pluging called org.csstudio.x.y, that file
must be called org.csstudio.x.y/preferences.ini.

Hierarchical Preferences

30

Note that Eclipse offers more ways to establish defaults, but they are discouraged for CSS because of
disadvantages:

• Defaults hard-coded in calls to the preference service: These are difficult to find in the code.

• Preference Initializer extension point defined in plugin.xml: This again hides the preference tags and
their default values in the code.

Putting the defaults into preferences.ini seems the best way to define and at the same time document
them.

6.2. Product (Site) Defaults:
plugin_customization.ini

When bundling plugins into a site-specific product, a file plugin_customization.ini in the plugin
that defines that product is automatically used by Eclipse to override settings from individual plugins.

Example plugin_customization.ini

Override defaults of plugin org.csstudio.demo:
URL of our super feature server
org.csstudio.demo/url=http://my.site.org/mysuperdata

Note that in comparison to an individual plugin's preference file, all settings in this global preference file
are prefixed with the name of the affected plugin. If you wonder about the names of preference settings
supported by each plugin, consult the preferences.ini of the respective plugin.

The file has to be in the plugin that defines the product. For example, assume you have a product X that
is defined in org.csstudio.x.y/X.product. Eclipse will look for a file org.csstudio.x.y/
plugin_customization.ini, i.e. a customization file in the root directory of the plugin that defines
the product, for settings to override values from individual plugins.

In the compiled version of the product, plugins are usually JAR files in a plugins sub-
directory of the installed product. The customization file will then be found inside plugins/
org.csstudio.x.y_*.jar where the * represents some version number and date. End users will
not open and modify that JAR file and the plugin_customization.ini file inside the JAR. This
way, your product has the settings for your site “built-in”.

In principle, you could actually un-zip the JAR file, edit the customization file, and re-zip it. As a CSS
maintainer for your site, you may occasionally be tempted to do this. The downside is that such changes
are easily forgotten, and the next time you build a product, you would have to re-do the un-zip, edit, re-
zip hack. A better approach to applying changes to the build-in settings of a product is described in the
next section.

6.3. Command-line Adjustments: -
pluginCustomization

If a select installation at a site requires a few extra changes, for example a test network installation
needs settings that differ from your main campus network, put those into a file with the same format as
plugin_customization.ini, for example testnet.ini, and run the product with a command-
line option

my_product -pluginCustomization /path/to/testnet.ini

Hierarchical Preferences

31

While that customization file has the same format as plugin_customization.ini, its name and
location are arbitrary. You can call it anything and place it anywhere, as long as you provide the full path
to it via the -pluginCustomization command line option.

In fact you want to always provide the full name to the file, even if it is in what you consider the current
directory, because the Java runtime that is started by the Eclipse RCP launcher could have a very different
idea of its current directory.

If Eclipse does not find your -pluginCustomization file, it is simply ignored, there will be no error message!
So if the settings that you think you put into a -pluginCustomization file are not having the desired effect,
triple check that you indeed provided the full and correct path to the file.

6.4. End User Settings: Preference Pages
Finally, the GUI code can offer Preference Pages via which the end user can change the settings. The exact
location of the menu entry for opening the Preference Pages can change. Eclipse usually has a Preference
entry in the Window menu, except on Mac OS X where it is placed in the Eclipse menu. CSS provides a
Preference entry in the Edit menu regardless of the operating system because that seems to be a common
location for the preference settings in other programs. (Older versions of CSS actually used the CSS menu)

Typically, these end-user settings are saved in the user's workspace, i.e. they persist for the current user but
will not affect the settings of other users or even the site-wide defaults. Details depend on the preference
store that is selected by the code that implements the preference page.

6.5. Secure Storage of Passwords
The CSS SecureStorage and PasswordFieldEditor allow to keep preferences for passwords
encrypted. It is for example used to store passwords for accessing the relational database of the SNS alarm
and archive system. These encrypted preferences can be stored in either of two places:

• INSTALL_LOCATION:

This is the directory where CSS is installed, for example /usr/local/css/CSS3.0.0. Using the
install location has the advantage that all users of CSS on that computer will have the password available
for use without actually knowing it.

The typical scenario is this:
• System administrator installs CSS.
• System administrator starts CSS and enters the passwords once in the preference GUI.
• Users can now run CSS. CSS plugins have access to the password, but users cannot see the password.

The disadvantage is that if a user were to try to change any of the related preferences from the GUI, CSS
will try to write the password and fail because ordinary users have no write permission in the install
location.

• CONFIGURATION_LOCATION:

The exact directory name of this location is determined automatically based on where the user can write.
It can for example be in an .eclipse sub-directory of the user home directory. Using the configuration
location has the advantage that every user of CSS can enter his or her own password. The password they
entered usually applies to their instance of CSS, but may also affect instances started by other users.

The typical scenario is this:
• System administrator installs CSS, maybe with some passwords build into the product's
plugin_customization.ini.

Hierarchical Preferences

32

• User can run CSS. CSS plugins have access to the built-in password.
• User knows another password, enters that password in the preference GUI.
• For that user, CSS plugins now use the password that the user entered.

The disadvantage of this approach it its unpredictability. The configuration location can default to the
CSS installation location if that user has write permissions to that area of the file system. If such a user
enters a password, it will be used by all instances of CSS on that computer. If a user with lesser file
access privileges enters a password, it will only be written to a configuration location in that users home
directory and not apply to other users.

The location for secure storage can be configured via this setting:

Can be either "INSTALL_LOCATION" or "CONFIGURATION_LOCATION".
By default it is "CONFIGURATION_LOCATION".
org.csstudio.auth/secure_storage_location=CONFIGURATION_LOCATION

org.csstudio.sns.passwordprovider
The Eclipse SecurePreferencesFactory that is used for the secure storage of passwords as
described above requires a password provider. This password is sued to encrypt and descrypt the
preferences. Eclipse provides implementations for Windows or OS X that can interface with OS-specific
key stores, including

• org.eclipse.equinox.security.macosx
• org.eclipse.equinox.security.win32.x86

On other operating systems, Eclipse will fall back to a dialog box that queries the user for a master
password. The plugin org.csstudio.sns.passwordprovider provides a password without
requiring user input, which can be very convenient. Since the password can be derived from reading the
code, it is not 100% secure

33

Chapter 7. Environment Variables
CSS, like Eclipse RCP and Java programs in general, does not use environment variables. The Eclipse/
CSS launcher may use the PATH environment variable to locate a suitable Java runtime, but once CSS
is running, all its settings are based on the Eclipse preference system, see Chapter 6, Hierarchical
Preferences.

Some CSS tools, however, may start external commands which in turn rely on environment variables.
Examples include buttons on an operator interface panel (see Chapter 15, BOY Operator Display) that are
configured to react to a mouse click by starting an external command.

Ideally, such external commands can be executed regardless of the current environment settings under
which CSS is running. To accomplish this, it is suggested to wrap the actual external command in a script
that establishes the required environment:

#!/bin/sh
#
Example 'start_xy' wrapper script.
CSS 'BOY' actions could for example use this
to start an external 'xy' tool.

Since we cannot know for sure under which environment
CSS has been started, set all environment variables
as they are required by the 'xy' tool
export PATH=/usr/local/bin:/usr/bin
export LD_LIBRARY_PATH=/usr/local/xy/lib
export XY_CONFIG_DIR/usr/local/xy/cfg

Start 'xy' with optional additional parameters
/usr/local/xy/bin/xy -mode=2 -flag=false "$@"

By using such a wrapper script, BOY actions for example can use start_xy something as the external
command. Details of required environment variables or command-line flags are hidden inside the wrapper
script.

7.1. Max OS X
Based on information by Jan Ilavsky, APS

A wrapper script for external applications is especially advantegeous on Mac OS X. While a user may
provide certain settings in a ~/.profile file for use in a terminal session, such settings are generally
not available inside a Mac OS X application like css.app.

To create environment variables which are then visible within CSS and its externally launched programs,
you can start CSS from a script as the following:

#!/bin/sh
#
Start CSS, including user-specific environment settings
source $HOME/.profile
/Applications/CSS_EPICS_3.1.6/CSS.app/Contents/MacOS/css

This CSS launcher script could then be wrapped by the freely available Platypus.app tool, which can
create Mac OS X apps from scripts. In Platypus, configure the app to terminate when done. You may add

Environment Variables

34

the CSS icon into the icon view in Platypus. Save as application where convenient and use that to start
CSS.app. This provides terminal environment variables to CSS, which are passed to shell programs started
by CSS, such as medm.

35

Chapter 8. Console
All Eclipse RCP programs, and this includes the CSS end-user GUI as well as command-line tools like
the archive engine, alarm server etc. include the OSGi console.

The console allows you to view which plugins have been loaded, to introspect extension points and more.
In principle it can be used to load additional plugins or to replace existing plugins at runtime, but at this
point no CSS tool is using that feature.

8.1. Enabling the Console
To start any RCP program with console access, add the command-line option

-console

You can allow network access to the console by adding a TCP port number, for example

-console 4884

You will then be able to access the console of the program remotely via

telnet host_where_program_is_running 4884

Multiple network connections to the same program are possible. Note that there is no security, i.e. anybody
on the network could “telnet” to your application and stop it!

8.2. Console Commands
Useful console commands:

• help - List all available commands.
• ss - List all plugins and their “short” status.
• ns - List all plugins that define extension points.
• ns name.of.some.plugin - List all extension points of that plugin.
• pt name.of.some.extension.point - List all implementations of that extension point.
• disconnect - Disconnect from a telnet session to the console. The application will continue to run.
• close - Close, i.e. stop the program. Note that this does not just end the console session, it stops

the application. The IApplication.stop() method will be invoked, which allows for a graceful
shutdown of the application.

There are also commands to list all applications, stop an application, update or add plugins, then restart
the application. Refer to the help command for more.

8.3. Adding Commands
Applications can add custom commands to the console. To accomplish this, you need to implement an

org.eclipse.osgi.framework.console.CommandProvider

and register it with the CommandProvider service. This can be done from the start() method of
the plugin activator:

class MyActivator
...
 public void start(final BundleContext context)

Console

36

 throws Exception
 {
 // Register console commands for this engine
 commands = new MyConsoleCommands();
 context.registerService(CommandProvider.class.getName(),
 commands, null);
 ...

When implementing your CommandProvider, note that there is no interface in the usual Java sense to
declare your console commands. Instead, all public methods starting with an underscore in their name and
a CommandInterpreter parameter will be available as console commands:

public class MyConsoleCommands implements CommandProvider
{
 @Override
 public String getHelp()
 {
 final StringBuilder buf = new StringBuilder();
 buf.append("---My commands---\n");
 buf.append("\thello - Say hello\n");
 return buf.toString();
 }

 /** 'hello' command */
 public Object _hello(final CommandInterpreter intp)
 {
 intp.print("Hello");
 return null;
 }
}

37

Chapter 9. Network Usage by CSS
As a control system tool, CSS naturally performs a certain amount of network communication. For the
most part, the CSS application run by end users acts as a network client, while tools like the Alarm Server
will obviously also need to serve data. CSS as a client tool can run without administrator privileges or
firewall exceptions.

9.1. Windows Firewall Warning
Even when running CSS as a client tool, you might run into the Windows Firewall warning shown in
Figure 9.1, “Windows Firewall Warning”.

Figure 9.1. Windows Firewall Warning

The message appears because even a client tool like CSS does sometimes listen on network ports, i.e. act
as a server. This usually happens for the following reasons:

• You configured logging to JMS (see Chapter 24, Logging - org.csstudio.logging and Chapter 12, Java
Message Server). While connecting to JMS, CSS will also listen.

• You opened the online help. Internally, this is implemented by CSS acting as a web server, and the help
viewer is an ordinary web browser.

You can usually cancel that firewall warning, meaning Windows will block access from other computers
on the network to your instance of CSS. Logging to JMS on another computer as well as local viewing of
the online help will not be affected by the firewall blocking outside access to your CSS client.

9.2. Required Firewall Exceptions
You might have to open firewall exceptions for all the tools that serve data, including

• Your RDB server: Check ports used by your RDB.
• Your JMS server: Usually port 61616.
• Archive Engines: Allow access to the status web server that you configure for each archive engine

instance.

For details on how to allow such accss, you will have to refer to the documentation of your firewall: Linux
iptable, Windows firewall.

38

Chapter 10. Relational Database (RDB)
Several CSS tools interface to a relational database. The archive system described in Chapter 11, Archive
System can store data in an RDB. The alarm system described in Chapter 14, Alarm System keeps its
configuration and persistent state there.

To end users of CSS, this is mostly transparent, but if you install and administer CSS for your site, basic
RDB administration skills will be required.

10.1. Supported Databases
CSS includes JDBC libraries for the following databases, and the alarm and archive system includes
example database definition (DBD) files to create the required tables for these database dialects:

• MySQL: This database is often the easiest to set up for initial tests and to support smaller operational
setups. Free, open-source.

The Community Version 5 should be usable.
• Oracle: This database system might be the most powerful, with virtually unlimited table sizes. It is,

however, not free.

Oracle 10 and 11 should work.
• PostgreSQL: This database might be a good compromise. Bigger table sizes. Free, open-source.

Postgres has to be at least version 8.4 to support sequences.

Your personal preference might of course differ, and it is also important to consider what database system
is already supported at your site.

10.2. RDB User Accounts
You will need to configure at least three types of RDB users:

• Administrator account: A user that can create tables, update indices, reset sequences etc.
• Write-access users: The ArchiveEngine needs a user account that can write samples to the archive related

tables. The AlarmServer needs a user account that can persist the alarm state. For each system you might
want to create a user that can write to the necessary tables of that system, but only that system, and
without general administrative rights.

• Read-only access: The CSS data browser needs a user that can read archived data. You might want to
create various reports for the RDB data. All of these could use one shared read-only account, a name
and password that you can freely distribute to end users who want to create their own reports on the
data with MS Access, JSP, PHP, ...

10.3. Network Access
CSS or Java JDBC tools in general tend to connect to the database from the network. Even if CSS is
running on the same computer that also hosts the database, it will still connect to localhost via network
system calls.

You should therefore check that the database is network accessible. Details depend on the database. With
MySQL, try for example

Relational Database (RDB)

39

mysql -h localhost -u root -p

With Postgres, use the psql shell, and edit the pg_hba.conf file to allow md5 or password access
to the Postgres server from the network, including localhost.

10.4. RDB URLs and Schemata
Whatever database you use, in the end you need to provide CSS tools or users who want to access the data
from other tools with the following configuration information:

• URL: Depending on the RDB system this will be a URL of the format

jdbc:mysql://[host]:[port]/[database]

for MySQL (default port is 3306),

jdbc:postgresql://[host]:[port]/[database]

for PostgreSQL (default port is 5432) or

jdbc:oracle:thin:@//[host]:[port]/[service]

for Oracle. CSS tools will use the start of that URL to detect the RDB dialect: MySQL, Oracle or
PostgreSQL.

• User name: A user name known to the RDB. To end users, you will typically provide the name of a
read-only account.

• Password: Associated password
• Schema: A prefix for RDB table names that might be needed by Oracle to access the tables.

To elaborate on the “Schema”, let's use an example. In the ALARM database, there is a PV table. When
using MySQL, one can connect with a URL

jdbc:mysql://my.rdb.host/alarm

as any user and directly read from the PV table. Similar with PostgreSQL.

With Oracle, the URL usually addresses an Oracle service, not a database schema:

jdbc:oracle:thin:@//my.rdb.host:1521/prod

With Oracle, only the schema owner, that is a user with the same name as the database, can directly
access the tables in a schema. All other users need to prefix the table name with the schema name, i.e. use
ALARM.PV to read from the PV table.

To support all types of database dialects, the CSS tools allow configuration of a URL as well as a schema.
For Oracle, you need to set that schema to the respective table prefix. For MySQL and PostgreSQL,
you typically define the schema as empty, because the URL already includes the schema name in its
[database] section.

40

Chapter 11. Archive System
One part of CSS is the Archive System, specifically the “Best Ever Archive Toolset, yet (BEAUTY)” that
was developed as a replacement for the Channel Archiver. An Archive Engine takes PV data samples from
a front-end computer, for example from EPICS IOCs via Channel Access, and places them in some data
storage, see Figure 11.1, “Archive System Overview”. Archive client programs then access historic data
samples in that storage.

As described here, the storage is a Relational Database (RDB) like MySQL, Oracle or PostgreSQL.
Both the historic data of PVs and the Archive Engine configuration are stored in the same relational
database. The engine configuration can be imported from an XML file format into the database, or it
can be exported from the database back into an XML file format for editing. The archive engine uses a
pluggable implementation for its configuration and data storage as described in Chapter 32, Archive Tools
- org.csstudio.archive.engine and related, so it is fundamentally possible to use the archive engine with
different storage for the configuration and data, but in the following examples we concentrate on an RDB-
based setup.

Typical setups will include more than one Archive Engine, for example one sample engine per subsystem.
In principle, data providers other than archive engines can also write samples to the storage. The CSS
Data Browser is a generic client program for looking at archived data, but fundamentally any program
that has access to a relational database can be used to create reports. A typical application might be JSP-
based web reports of data.

Figure 11.1. Archive System Overview

Archive System

41

There are two integration points with the legacy Channel Archiver: The ArchiveConfigTool tool can
import existing archive engine configuration files into the RDB because the XML file format is compatible
with the Channel Archiver. The Data Browser is capable of reading data from the relational database as
well as from the Channel Archiver's XML-RPC-based data server, thereby allowing nearly transparent
access to both “old” and “new” data.

11.1. Relational Database Setup
Before using the archive tools, you need to create the required table structure in your RDB. Currently
MySQL, Oracle and PostgreSQL are supported, see also Chapter 10, Relational Database (RDB).

The commands for creating the RDB table structures are in files in the dbd sub-directory of the plugin
org.csstudio.archive.rdb. Basic RDB administration skills will be required because you need
to create the table structure by using one of these files, and will probably also need to create two accounts:
One account for the archive engines that has write access to the tables, and another read-only account for
archive clients like the CSS Data Browser to read archived data.

The RDB tables for the different database dialects are very similar with the exception of the TIMESTAMP
used to store the time stamps of samples. While the Oracle time stamp data type already offers nanosecond
detail, the MySQL and PostgreSQL data types of the same name only cover seconds. The MySQL tables
therefore have an added nanosecs column for this purpose. There are a few more differences in the SQL
dialects, but the Archive Engine and Data Browser auto-configure based on the database URL.

The setup for MySQL might be the easiest at least for development and testing, but it has limitations. All
samples for all channels are written to one sample table. By default, MySQL table sizes are limited to
4GB (See MySQL show table status command, column “Max_data_length”). While this can be
adjusted, I believe there is still a limit of 4G rows (=samples). Furthermore, while it will be almost trivial
to enter something like

DELETE FROM sample WHERE smpl_time < ...

to delete older samples, this will either not free up any space or require an added OPTIMIZE rebuild,
which takes a very long time.

For PostgreSQL, the table size limit at this time seems to be much higher at 32TB, with no additional
row count limit. Performance of the sample table that holds archived samples is reduced by about 50%
when adding constraints. The dbd file for PostgreSQL includes constraints to allow the RDB to assert
referential data integrity, but if you trust the Archive Engine code to only write correct samples to the
RDB, performance can be gained by disabling the sample table constraints.

One reason for using Oracle lies in its support for partitioning. While the sample sample appears
as one table, it can be spread over several table partitions based on the sample time and channel
name. Spreading by channel name might improve performance because several channels can be written
in parallel to different disk locations. Partitioning by time allows quick removal of older samples.
In addition, for Oracle the archive data readout implementation used by the Data Browser (plugin
org.csstudio.archivereader.rdb) supports a stored procedure for server-side data reduction
which is not available for MySQL.

Whatever database you use, in the end you need to provide all CSS archive tools with the following
configuration information as elaborated in Section 10.4, “RDB URLs and Schemata”:

• URL

• User name

• Password

Archive System

42

• Schema

For the Archive Engine and Archive Config Tool, you need to provide the user name and password of an
RDB account that has write access to the archive tables. For the Data Browser or other tools that read data,
a read-only account is sufficient. See Chapter 6, Hierarchical Preferences for details on how to provide
these RDB settings for the archive plugins. The command-line tools will also accept these parameters on
the command-line.

11.2. Building the Tools
The Archive Engine is the central sampling tool that reads values from PVs and writes them to the
archive data storage. It is implemented as an Eclipse product. You will probably also want to build
ArchiveConfigTool, the tool used to import engine configuration files into the relational database. They
are defined in these product files:

org.csstudio.archive.engine/ArchiveEngine.product
org.csstudio.archive.config.rdb/ArchiveConfigTool.product

For first tests, you can run both tools from within the Eclipse IDE as described in Chapter 4, Compiling,
Running, Debugging CSS, Section 4.7, “Using the Eclipse IDE”, but note that you will have to provide
command-line arguments to them. After first tests are successful, you can export them from the IDE as
described in the same section. Finally, you will need one of the CSS end-user products that includes the
Data Browser to look at the archived data, but for now we concentrate on the tools needed to collect data.

11.3. Archive Engine Configuration
Each sample engine configuration identified by a name, for example “WaterSystem”. Inside the RDB the
configuration is actually identified by a unique numeric ID, but most end user tools only see the name
of the configuration.

Channel Groups
Each archive engine configuration is comprised of groups. An engine configuration has at least one group,
maybe more, and channels are then added to these groups. Groups are not hierarchical: There are no sub-
groups within groups, only one list of groups.

Groups are primarily used to organize the configuration. For example, a “WaterSystem” sample engine
configuration might have groups “WestSector”, “MainBuilding” etc. to hold the channels for the respective
section of the water system. Note that this arrangement of channels into groups is not visible to end users
of the data! The separation of channels into groups inside the sample engine configuration is mostly meant
for the engineers who maintain the sample engine configuration, grouping the channels by location along
the machine, but associated front-end computer, or by functionality.

There is one functional aspects of groups: Archiving of all channels in a group can be enabled or disabled
based on one channel in the group. When placing all channels of a power supply in a group, this feature
can be used to suppress archiving of noise while the power supply is off by using a channel that indicates
whether the power supply is on or off to enable the archive channel group.

Channels
A channel in the archive system is basically the data provided by one Process Variable. A channel is
identified by its name, which has to be a valid PV name for the control system, a PV that you can also read

Archive System

43

with other control system tools. The samples stored for the channel include not only the value, for example
a number, but also the time stamp, status/severity and meta data like engineering units and display ranges.
The time stamp, status/severity and value are stored with each sample. The meta data is only stored once
at startup of the archive engine because the original implementation for EPICS did not offer an efficient
way to monitor for changes in the meta data.

When a channel sends a new value to the archive engine is somewhat outside of the control of the
archive engine. The software on the front end computer controls this. For EPICS record, the SCAN field
in combination with the ADEL field of analog records determines when a new value is sent to the archive
engine.

The meta data for a channel is similarly controlled by the front end device that provides the data. For
EPICS records, the EGU, HOPR and other fields have to be used to configure these.

Duplicate Channels
The RDB configuration allows for multiple sample engines. Each sample engine has one or more groups
of channels, and each group has one or more channels. A channel, however, can only be archived once. It
is illegal to list a channel in more than one group or under more than one sample engine.

11.4. Sample Modes
The archive engine supports several sample modes, i.e. ways in which it decides what samples should
be written to the archive data store. As just mentioned in the section called “Channels”, the front-end
computer decides which updates to send to the archive engine. In an ideal world, every such change would
be meaningful and there were infinite resources (CPU power, disk space, network bandwidth) to store
every change until eternity. In reality, it is often better to store fewer samples.

The archive engine supports the following sample modes by which it collects samples from a channel.
Refer to the section called “Archive Config Tool” for an example of how these sample modes are specified
in the XML format that can be used to configure an archive engine.

Monitored
In monitored mode, each received sample is written to the store. With a perfectly configured data source,
for example an EPICS ADEL that only passes significant changes to the archive engine, this mode is ideal:
Significant changes in value are written to the archive, while noise in the signal is suppressed to minimize
wasted resources.

When configuring a monitored channel, the estimated time period between changes needs to be configured
to allow the archive engine to reserve a suitable memory buffer where it stores received samples until they
are written to the storage.

Monitored With Threshold
This mode is also monitored, but adding another value change threshold filter. Ideally, the front-end
computer already performs the thresholding, so only significant changes are sent over the network to the
archive engine. In some cases, however, this is not possible, and for those cases the archive engine itself
can check for changes in the value, writing only samples that differ from the last written sample by at least
some configurable margin.

As with plain monitored channels, the estimated time period between changes needs to be configured.

Archive System

44

Scanned/Sampled
In scanned mode, the archive engine still receives each update from the data source, but it only writes the
most recent sample at periodic times, for example once every 5 minutes.

For a scanned channel you configure the period at which the archive engine should check the channel for
its current value.

This mode is a compromise. If a channel has no significant change for hours, why should the uninteresting
changes fill disk space every 5 minutes? On the other hand, if an important even happens that produces a
brief “blip” in the data, the archived data is likely to miss it when only storing a value every 5 minutes.

This mode was created for channels which do not have a good dead-band configuration, where using the
monitored mode would add too many samples to the archive. Periodic sampling is clearly imperfect, but
sometimes a workable compromise.

Writing Samples to Storage
Samples obtained by the various samples modes are not immediately written to storage, for example the
RDB, because writing each individual sample right away would be too slow. Instead, samples are initially
kept in memory, then written to storage in bulk. By default, this write period is 30 seconds.

The period configured for scanned channels or the estimated change period for monitored channels is used
to allocate the in-memory buffer that the engine uses to collect samples between writes. The in-memory
buffer is a ring buffer that is written each write period. If a monitored channel sends many more samples
than configured via the estimated update period of a channel, the archive engine sample buffer for that
channel will overrun older in-memory samples for that channel. The archive engine actually uses a buffer
reserve to allocate a slightly bigger in-memory buffer to avoid such overruns:

 buffer_size = write_period / scan_period * buffer_reserve

The default buffer reserve is 2. With the default write period of 30 seconds, a channel with an estimated
change period of 2 seconds would thus expect to need to buffer 15 samples between writes to storage,
but the the actual buffer size would be 30 to prevent ring buffer overwrites during times where writing to
storage is slightly delayed, or a few more samples are received than originally expected. The in-memory
buffer still has a fixed size, it will not grow when more samples are received to keep a constant memory
footprint for the archive engine.

When writing accumulated samples for all channels to storage, i.e. by default every 30 seconds, the samples
are written in batches. For RDB-based storage, the JDBC statements are batched to reduce the number of
individual commits to the RDB. The default batch size is 500.

Time Stamp Checks
When viewing archived data, the time stamps of historic samples are obviously quite important. The
Archive Engine simply receives time-stamped data from front end computers and has no way to determine
if those time stamps are correct. It enforces, however, a few basic rules:

• Zero time stamps: Time stamps with zero seconds, for example EPICS time stamps with zero seconds
since the EPICS epoch of 1970, are ignored.

• Time stamps that go back-in-time, i.e. time stamps that are before samples that have already been
inserted into the archive, are ignored.

• Futuristic time stamps, that is time stamps that are too far ahead of the clock of the host that is executing
the archive engine, are ignored. By default, this ignored future is 1 day.

Archive System

45

11.5. Editing the Configuration
The configuration for all archive engines resides in the RDB, which allows you to modify it in various
ways. Note, however, that running archive engines are not notified of configuration changes in the RDB
because there is currently no convenient mechanism for them to learn about such changes. You must
manually re-start all affected archive engines after modifying their configuration!

SQL Manipulation
It is possible to modify an archive engine configuration via direct SQL manipulation, for example from
an SQL shell:

SELECT * FROM smpl_eng;
INSERT INTO smpl_eng(name, descr, url)
 VALUES ('demo', 'Example Engine',
 'http://somehost:4812');

This clearly requires some familiarity with the RDB table layout, see Section 11.1, “Relational Database
Setup”. For operations like renaming a channel or bulk changes this can be the most convenient procedure.

Archive Config Tool
The ArchiveConfigTool can export existing archive engine configurations from the RDB into an
XML file format, or import such XML files into the RDB. The XML file format is compatible with the
one used by the Channel Archiver, allowing the import of existing archive engine configurations.

The xml directory in the plugin org.csstudio.archive.config.rdb contains a commented
example configuration file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Example for XML configuration file syntax -->
<engineconfig>
 <!-- Engine can have one or more groups
 Each group has a name and one or more channels
 -->
 <group>
 <name>NorthSectorVacuum</name>
 <!-- Each channel has a name and
 a sample period (or expected change period).
 The period is either in seconds or in HH:MM:SS format.
 It is either using the 'monitor' or 'scan' sample mode.
 -->
 <channel>
 <name>NSV:P1</name>
 <period>1.0</period><monitor/>
 </channel>

 <!-- Example for a monitor with engine-enforced
 value change threshold of 2.5
 -->
 <channel>
 <name>NSV:P2</name>
 <period>1.0</period>

Archive System

46

 <monitor>2.5</monitor>
 </channel>

 <!-- Channel that is scanned every 10 minutes-->
 <channel>
 <name>NSV:Enable</name>
 <period>00:10:00</period><scan/>
 <enable/>
 </channel>

 <!-- Channel that enables sampling of this group -->
 <channel>
 <name>NSV:Enable</name>
 <period>1.0</period><monitor/>
 <enable/>
 </channel>
 </group>

 <!-- Other Group -->
 <group>
 <name>SouthSectorVacuum</name>
 <channel>
 <name>SSV:P1</name>
 <period>1.0</period><monitor/>
 </channel>
 </group>
</engineconfig>

The ArchiveConfigTool offers command-line help similar to this:

-help : show help
-engine my_engine : Engine Name
-config my_config.xml : XML Engine config file
-export : export configuration as XML
-import : import configuration from XML
-delete_config : Delete existing engine config
-description 'My Engine' : Engine Description
-host my.host.org : Engine Host
-port 4812 : Engine Port
-replace_engine : Replace existing engine config, or stop?
-steal_channels : Steal channels from other engine
-rdb_url jdbc:... : RDB URL
-rdb_user user : RDB User
-rdb_password password : RDB Password
-rdb_schema schema : RDB schema (table prefix), ending in '.'

To export an existing engine configuration into an XML file, use

ArchiveConfigTool -engine my_engine -config my_config.xml -export

In addition, the RDB connection parameters might have to be supplied unless they are built into the tool
or provided via a -pluginCustomization argument.

To import a configuration from an XML file into the RDB, use

ArchiveConfigTool -engine my_engine -config my_config.xml -import\
-host my.host.org -port 4812

Archive System

47

The host name specifies the host on which the engine is supposed to execute, and the port number under
which is runs its web server. The configuration file could be the edited result of a previous export, or have
been created by other means.

The archive config tool is cautious about disturbing existing configurations. By default it will stop
when there is already a configuration in the RDB for the same sample engine name unless the -
replace_engine option is provided, in which case an existing configuration for that engine name will
be deleted before importing the XML file. Similarly, the config tool will ignore channel names that are
already handled by a different engine configuration, unless the -steal_channels option is provided
to instruct the tool to move such channels from the archive engine that previously handled the channels.

11.6. Running Archive Engines
The ArchiveEngine is a headless RCP application that reads a sample engine configuration, connects
to the control system channels listed in the configuration, and writes received samples to the archive data
store.

It supports these command-line arguments:

-help : Display Help
-port 4812 : HTTP server port
-engine demo_engine : Engine config name
-data /home/fred/Workspace : Eclipse workspace location
-pluginCustomization /path/to/mysettings.ini: Eclipse plugin defaults

The -pluginCustomization parameter can be used to provide settings for the RDB connection, to
configure the logging, and to provide settings for access to the control system, for example EPICS Channel
Access network preferences.

The -engine parameter selects the sample engine configuration. In principle, that engine configuration
already includes the URL of the engine web server, but an additional -port parameter is required for two
reasons: First, this allows the engine to start a web server which can be used to monitor engine operation
as soon as possible, for example while the engine it trying to connect to an RDB. Secondly, the engine will
compare the provided port number with the port number of the URL in its configuration. This is means as
a basic constistency check that helps avoid running archive engines with the wrong configuration.

Engine Web Server
Each sample engine has a built-in web server for status information and basic remote control of the engine.
When starting the engine on a host, the port number for this HTTPD must be provided. The sample engine
URL configured in the RDB should match the format

http://<host>:<port>/main

The engine will compare the port number from the URL with the port number provided as a command-
line argument.

The engine web server provides several web pages, mostly linked from the .../main URL, that allow
you to see:

• Is the engine running? Since when?
• Are all channels connected? Which are disconnected?
• What is the last data that a channel has received? What is the last sample that was written to the storage?

In case of problems, the last item is usually helpful to determine: Does the front end computer send correct
time stamps? Does the data change to qualify for writing a new sample to the storage?

Archive System

48

Note that the engine only serves a blank page at its root URL. For example, accessing http://
localhost:4813 will result in an empty page. You have to start browsing at http://
localhost:4813/main. Starting at .../main, one can drill down to the status of groups and
individual channels.

A few engine web pages are not accessible by following web browser links because they affect the engine
operation. This is meant to prevent a web-crawling program to accidentally stop the engine.

Other Engine URLs

http://<host>:<port>/
stop

Invoke this URL to stop the engine gracefully, i.e. to ask the engine
to write a final Archive_Off sample to each channel, then quit.

http://<host>:<port>/
restart

Invoke this URL to trigger a running restart of the engine. The
engine will stop sampling, read its configuration, then start again.
Invoking this URL is required after changes to the configuration of
an archive engine.

http://<host>:<port>/
reset

Invoke this URL to reset engine statistics, for example the average
write time displayed on the main page of the engine.

http://<host>:<port>/
environment

Invoke this URL to display engine environment settings which
might be useful when trying to debug a problem.

11.7. Archive Engine Messages

Channel skips back-in-time
The archive engine tries to write all samples with their original time stamp as received from the Channel
Access server. Each unique sample only needs to be written once. The underlying storage may in fact
prohibit attempts to write a sample multiple times, or only allow append operations for samples with
new time stamps, refusing insertion of samples with previous time stamps. This may result in occasional
messages for channels that seldom change, combined with archive engine restarts or network issues.

For example, assume a a channel has not changed since 2013/10/29 08:00. At 09:00, the archive engine is
stopped, writing an “Archive Off” value for the channel. At 10:00, the archive engine is restarted. After
each start, it will write the current value of each sample. If that is not possible with the actual time stamp of
the received sample, because that sample was already written at 08:00 in this example, plus there is already
another sample at 09:00 for this channel, the engine will write the sample with the current host clock time,
i.e. 10:00. You will then see occasional messages for this channel if its actual value does not change:

WARNING ... - SomeChannelName skips back-in-time:
last: 2013/10/29 10:00 3
new : 2013/10/29 08:00 3

This warning can usually be ignored, since no data is lost at all.

Channel buffer overruns
The following type of message indicates that the per-channel buffer, used by the engine to keep samples
in memory between periodic writes to storage, has been overrun:

WARNING ... - SomeChannelName: 3 overruns

As elaborated in the section called “Writing Samples to Storage”, the size of this buffer depends on the
expected update period of a monitored channel, with an added reserve to allow for occasional delays in
RDB write performance.

Archive System

49

If the warning results from a wrong estimate of expected channel updates, correct the update period
estimate. If the warning results from excessive delays when writing to the RDB, try to fix RDB speed
issues. Finally, the warning can be ignored if you configured the channel on purpose with an expected
update period of say one second, because you intentionally want to suppress occasional bursts of updates,
and prefer to preserve storage space.

11.8. Web-Based Archive Monitor and Editor
At the SNS, a JSP-based collection of reports can display graphs of the archive system performance, for
example: Which archive engine wrote how many samples to the archive over the last hour? It also includes
a web-based editor for the alarm system configuration.

This reporting package, however, is currently part of a bigger, more SNS-specific reporting package.
Contact Kay Kasemir if you are interested in collaborating on a more portable version of these reports.

11.9. Viewing Data in CSS
The CSS Data Browser uses the plugin org.csstudio.archive.reader to access archived data
in general. The plugin org.csstudio.archive.reader.rdb provides access to data stored in an
RDB written by the archive engine described in this chapter, i.e. it implements reading from URLs of the
form jdbc:.....

For a successful retrieval, you need the following:

• Include org.csstudio.archive.reader.rdb in your CSS product.
• Configure it with the correct (read-only) RDB user and password.
• Configure the Data browser to use URLs like jdbc:mysql://localhost/archive to read from

the archive.

50

Chapter 12. Java Message Server
CSS uses a Java Message Server (JMS) for several purposes. Log messages from CSS applications in
general can optionally be sent to JMS, see Chapter 24, Logging - org.csstudio.logging. The alarm system
uses JMS for the communication between the alarm server and clients.

12.1. Apache ActiveMQ Server
CSS uses Apache ActiveMQ, a free and open-source implementation of JMS available from http://
activemq.apache.org.

Fundamentally, ActiveMQ is a portable Java application, but the scripts to start it are slightly different for
Windows and other operating systems, so assert that you download the version suitable for your computer.
After downloading it, the ActiveMQ server can be started like this:

cd [activemq_install_dir]
bin/activemq start

To stop the server, replace the argument start with stop. As a very basic test on Unix and OS X, you
can check if the server is listening on port 61616:

netstat -an | fgrep 61616

The page https://github.com/ControlSystemStudio/cs-studio/wiki/JavaMessageServer has more details on
how to adjust the default JMS configuration. For example, you probably want to disable parts of JMS that
are not required for operation with CSS.

12.2. Client (CSS) Configuration
To use JMS for logging or the alarm system, CSS needs the URL of your JMS instance. It should be of
the form

failover:(tcp://your_jms_host:61616)

“Failover” with a single server instructs the client to automatically re-connect after network problems.
Actual failover between multiple JMS instances is also possible, but for details you need to refer to the
Apache ActiveMQ documentation.

12.3. Testing your Setup
As a basic test of your JMS setup, you can enable JMS logging in your CSS product, for example by adding
these lines to your plugin customization file (see Chapter 6, Hierarchical Preferences):

org.csstudio.logging/console_level=FINE
org.csstudio.logging/jms_level=FINE
org.csstudio.logging/jms_url=failover:(tcp://your_jms_host:61616)

As a result, CSS should send several log messages to JMS. You can verify this by starting the JMS Monitor,
see Chapter 33, JMS Monitor - org.csstudio.debugging.jmsmonitor, to view messages for the LOG Topic.

While you should probably disable this in a production setup, the default configuration of ActiveMQ
includes a web browser interface. It is accessible at http://localhost:8161/admin on the host where JMS is
running. It can display who is connected to JMS and what topic each connection is reading or writing.

http://activemq.apache.org
http://activemq.apache.org
https://github.com/ControlSystemStudio/cs-studio/wiki/JavaMessageServer
http://localhost:8161/admin

Java Message Server

51

12.4. Message Types
All JMS messages used by CSS are of the MapMessage type. Fundamentally, this allows messages
with arbitrarily named string properties for content. In reality, however, messages are most useful when
the involved applications understand the messages. For example, every message shall have a TYPE
property. CSS log messages as sent by the plugin org.csstudio.logging (see Chapter 24, Logging
- org.csstudio.logging) have the following properties:

• TYPE: Set to “log” to identify as log message.
• TEXT: The actual log message.
• SEVERITY: Log level, for example “SEVERE” or “FINE”. The exact severity may depend on the

underlying logging system.
• CREATETIME: Time when message was created. Format must be yyyy-MM-dd HH:mm:ss.SSS
• CLASS: Name of (Java) class were message was created.
• NAME: Name of Java method
• APPLICATION_ID: Application name like “CSS” or “AlarmServer”
• HOST: Host name running the application.
• USER: Name of user who was running the application.

The content of messages exchanged within the alarm system or from for example a tool that logs write
actions from an operator interface should try to use the same properties as much as possible.

12.5. JMS logging to RDB
The original RDB schema for logging JMS messages as shown in Figure 12.1, “Message RDB
Schema”was developed for the DESY version of CSS.

Figure 12.1. Message RDB Schema

The column “DATUM” (German for date) holds the time when a message was written to the RDB.
All other message properties like TEXT and CREATETIME are written to the MESSAGE_CONTENT
and MSG_PROPERTY_TYPE tables. This schema is very compact and generic. On the other hand,
it is operationally often useful to search for all messages of TYPE=log or with a certain SEVERITY.
Such searches are relatively slow in the original schema because they require nested lookups in the
MESSAGE_CONTENT table.

The SNS version of CSS therefore added commonly used message properties directly to the MESSAGE
table. Some tools like the message viewer from org.csstudio.alarm.beast.msghist
automatically determine which message properties are in the main MESSAGE table, and which are in the
MESSAGE_CONTENT table. Other tools like the ones used to write messages from JMS to the RDB are
site-specific, see Chapter 35, RDB Logging - org.cstudio.logging.jms2rdb

12.6. Viewing the Message History
CSS includes a generic message history browser as part of the alarm system, see Chapter 31, Message
History Browser - org.cstudio.alarm.beast.msghist. Once the messages are logged to the relational

Java Message Server

52

database, it is of course possible to create various tools to create customized reports, for example based
on JSP technology for web reports.

53

Chapter 13. Authentication and
Authorization

13.1. Overview
Access to some components of CSS is restricted. Changes to the alarm system configuration for example
are only permitted to authorized users. User interface elements like the context menu entries to configure
or remove some part of the alarm configuration are only accessible after the user has logged in and that
user is indeed authorized to manipulate the alarm configuration.

Figure 13.1. Authenticate to change alarm configuration

The “Configure Item” command, initially inaccessible, becomes available after authenticating as a user
who is authorized to configure the alarm system.

Authentication is the act of confirming a user's identity, typically by prompting for a user name and
password, and trusting that the user is who he claims to be if the password checks out OK. Authentication
associates the user with either a real name like “Fred” or a user ID like “fr9”.

Authorization is the process of determining if an authenticated user is allowed to perform a certain
operation, typically by consulting some type of database that lists the permissions of all the known users.

A certain understanding of these mechanisms is required even if you want to start out by providing all
users with full access to all features, because missing Auth & Auth support can result in restricted access
for all users.

The following sections will explain the available options for authentication, authorization, secure
preferences. At the end of the chapter you will find an example configuration file for a CSS product that
selects a desired way of authenticating, authorizing and how to handle secure preferences.

Authentication and Authorization

54

13.2. Authentication
CSS uses JAAS, a standard Java technology, for authentication. Fundamentally, JAAS requires a JAAS
configuration file. You may already have a JAAS configuration file for your site that is used by other
Java-based tools, and CSS could use that same file. Alternatively, you can also provide the equivalent of a
JAAS configuration file via a single Eclipse preference, which may be more convenient for bundling and
deploying CSS. The following examples will use the original JAAS configuration file syntax, and how to
point CSS to such a configuration file or how to convert it into an Eclipse preference will be explained
at the end of this chapter.

Initial User Identity
JAAS supports several Login Modules, including two which trust that the operating system has already
determined the current user. The NTLoginModule accepts the currently logged-in Windows user, while
the UnixLoginModule takes the currently logged-in Linux or Mac OS X user. In other words, these
two modules do not require an actual log in process. They will not prompt for a user name and password,
but simply fetch information about whoever started CSS.

On startup, CSS will try to use these modules to determine the initial user name as long as your JAAS
configuration file contains the following two entries:

/* Use the currently logged-in user on Linux and Mac OS X */
unix
{
 com.sun.security.auth.module.UnixLoginModule required
 debug="true";
};

/* Use the currently logged-in user on Windows */
windows
{
 com.sun.security.auth.module.NTLoginModule required
 debug="true";
};

The default JAAS configuration file that is built into CSS already contains these two entries, and in many
cases that is all you need: As CSS is started, it knows who is currently logged in.

There are cases, where the initial user is not helpful for authentication purposes. For example, CSS used
in the control room may run with a shared user account like “operator”. To configure the alarm system,
however, you want users to log into CSS with their individual name like “Fred”. To accomplish this, use
one of the following options.

Plain Text Password File
The JAAS FileLoginModule allows you to specify user names and their passwords in a plain text file.
To use this option, add a configuration similar to the following to your JAAS configuration file:

/* Use plain-text password file. */
file
{
 com.sun.jmx.remote.security.FileLoginModule required
 debug="true"

Authentication and Authorization

55

 passwordFile="/path/to/the/passwords.conf";
};

The password file simply lists user names and their passwords:

Example passwords.conf
Fred=IamFred
Jane=MySecretPassword

While the plain text password file offers an easy way to get started with authentication, it is most useful
for testing. The passwords are not encrypted. Any user can view them, so this option is not practical for
an operational setup.

JAAS LDAP Authentication
JAAS can connect to an LDAP server. This might be the same LDAP server that is also used for your
Unix logins, or an LDAP server that mirrors a site-wide Active Directory. Fundamentally, no changes are
required to such an existing LDAP server, you simply instruct JAAS to use it in one of two ways.

First, you can use the standard JAAS JndiLoginModule. This requires an LDAP server that provides
the inetOrgPerson schema, which is commonly used for handling authentication on Linux.

/* LDAP authentication.
 * Example of using LDAP on 'localhost'
 * and some root DN.
 *
 * Refer to javadoc of JndiLoginModule
 * for full details.
 * The user URL must point to entries
 * in the LDAP "inetOrgPerson" schema
 * with "uid" and "userPassword" attributes.
 * The provided user name must match a "uid",
 * and the password must match
 * the "{crypt}..." version of "userPassword".
 */
Local_LDAP
{
 com.sun.security.auth.module.JndiLoginModule required
 debug=true
 user.provider.url="ldap://localhost:389/ou=People,dc=test,dc=ics"
 group.provider.url="ldap://localhost:389/ou=People,dc=test,dc=ics";
};

The other LDAP based mechanism is more generic. JAAS will not attempt to read the password or anything
else from LDAP, so there are no requirements on the encoding or accessibility of the password. JAAS will
simply attempt to “bind”, i.e. connect to LDAP with a given user name and password.

/* Authentication via LDAP 'bind'.
 *
 * Fundamentally, this uses
 * org.csstudio.security.authentication.LDAPBindLoginModule
 * but that class would not be accessible by JAAS.
 * The Eclipse extension point
 * org.eclipse.equinox.security.loginModule
 * registers it as "org.csstudio.security.ldapBind",
 * and JAAS will then use it via the Eclipse ExtensionLoginModule.

Authentication and Authorization

56

 */
SNS_UCAMS
{
 /* Get LDAPBindLoginModule via Eclipse */
 org.eclipse.equinox.security.auth.module.ExtensionLoginModule
 required
 extensionId=org.csstudio.security.ldapBind

 /* Parameters for LDAPBindLoginModule */
 debug=true
 user.provider.url="ldaps://skynet2.ornl.gov/ou=Users,dc=ornl,dc=gov"
 user.dn.format="uid={0},ou=Users,dc=ornl,dc=gov";
};

Adding Custom Authentication Methods
JAAS is extensible. You can provide Java code for a JAAS LoginModule to handle authentication as
you desire. For use in Eclipse/CSS, that login module needs to be placed in a plug-in and registered via
the Eclipse extension point

org.eclipse.equinox.security.loginModule

Inside the JAAS configuration, you then use the Eclipse LoginModule
org.eclipse.equinox.security.auth.module.ExtensionLoginModule to access
your login module. This additional layer of indirection is required because Eclipse controls the Java class
path. JAAS cannot directly reach your contributed JAAS LoginModule unless you register it via the
extension point, and then access it via the Eclipse ExtensionLoginModule.

For details, refer to the JAAS LoginModule documentation and also the code in
org.csstudio.security that relates to the LDAPBindLoginModule described in the previous
section.

13.3. Authorization
Once the user is authenticated, i.e. CSS has a valid user name or ID, it uses Authorization to determine if a
user may perform a certain action. Each application determines which actions require what authorization.
For example, the alarm system uses the following:

• alarm_ack: Authorization that is required to acknowledge alarms. For example, everybody in the
control room is typically allowed to acknowledge alarms.

• alarm_config: Authorization that is required to configure the alarm alarm system. This permission
may be limited to a smaller group of people.

File-Based Authorization
With file based authorization, a text file is used to list all authorizations and the users who are granted
each authorization:

Configure authorizations and users who have them
based on user name patterns

Format:
authorization = pattern for users, pattern for users, ...

Authentication and Authorization

57

#
Authorizations are defined by applications.
For example, the alarm system GUI might require
the "alarm_ack" authorization
for acknowledging an alarm.
#
In addition, the authorization "FULL" covers everything.
#
User patterns are regular expressions.
Multiple patterns are separated by ",".
Each pattern itself must not contain a ",".

Anybody can acknowledge alarms
alarm_ack=.*

Specific users may configure alarms
alarm_config = Fred , jane

Anybody called xyz-admin has full access
FULL = .*-admin, ky9, 5hz

The following would allow anybody to do anything
FULL = .*

File-based authorization is relatively easy to configure and thus a good starting point. Anybody can read
the autorization file. For an operational setup this file should consequently be read-only so that ordinary
users cannot edit the file and thus grant themselves permissions that they are not meant to have.

LDAP-Group-Based Authorization
In this authorization mode LDAP is queried for the group membership of the authenticated user. Any
group membership is then interpreted as authorization.

Usually, the same LDAP server that was also used for authentication can thus support authorization,
making this approach very practical for a production setup.

The LDAP directory must support the posixGroup schema, which is the standard for Unix-type account
information stored in LDAP.

Example LDAP entry:

dn: cn=archive_config,ou=Groups,dc=example,dc=com
objectClass: top
objectClass: posixGroup
cn: archive_config
description: Allow archive configuration
gidNumber: 1234
memberUid: Fred
memberUid: jane

The above entry defines a group archive_config with members “Fred” and “jane”. This will be treated
as granting the archive_config authorization to users “Fred” and “jane”.

Note that members must specifically be listed via memberUid. In the above example, there may be a user
with primary group ID 1234 that Linux would also consider to be a member of the archive_config

Authentication and Authorization

58

Linux group, but for authorization purposes such a user must also be listed via memberUid. The numeric
group ID is not used for authorization.

Script-Based Authorization
For script-based authorization, an external script is invoked with the name of the authenticated user. That
script is then expected to return a list of authorizations for that user.

Example script:

#!/bin/sh
#
Script for ScriptAuthorizationProvider
#
Invoked with user name, it lists all authentications.
#
This implementation uses the group names of the user
as authorization identifiers.
Usable on Linux or Mac OS X

if [$# -ne 1]
then
 echo "USAGE: id_auth user_name" 1>&2
 exit -1
else
 id -G -n "$@"
fi

This specific example script is conceptually similar to the LDAP-group-based authorization, but instead of
contacting an LDAP server, the script uses the id command to determine the user groups. By customizing
the script for your needs, you can call any extenal program to obtain a lit of authorizations.

Adding Custom Authorization Methods
The Script-Based Authorization as just described allows adding new authentication methods that
are external to CSS/Eclipse/Java. To include a new Java-based authorization method into CSS, add
an OSGi/Eclipse Service that provides an AuthorizationProvider. Refer to the JavaDoc for
org.csstudio.security.authorization.AuthorizationProvider for details.

13.4. Secure Preferences
CSS uses the Eclipse preferences to obtain URLs for accessing archived data etc. Some of these preference
settings, for example passwords, are stored in an encrypted file separate from the normal Eclipse
preferences.

You can configure where these encrypted settings are stored:

• Default: Use the default location, which is typically the user's home directory.

Advantage: It's the default.

Disadvantage: You won't always know where the preferences are.

• Instance: Use the Eclipse 'instance', i.e. the workspace.

Authentication and Authorization

59

Advantage: You know where it is, and each workspace will have its own settings.

Disadvantage: Each workspace has different settings.
• Install: Use the Eclipse 'install' location, i.e. where the product is installed.

Advantage: You know where it is, and every workspace for that product will have the same settings.
Good for a "global" setup.

Disadvantage: Ordinary users cannot (should not) have write permissions.

Setting Secure Preferences
Secure preferences can be provided via the hierachical preference system as usual, for example in a
plugin_customization.ini:

org.csstudio.whatever/password=ThePassword

When doing this, the password is obviously not encrypted. Direct editing of the secure preference file is
not possible, because you would have to enter the encrypted value.

In the CSS user interface, secure preferences can be entered via the ordinary preference GUI (Menu Edit/
Preferences). For headless CSS tools like the alarm server which do not offer a preference GUI, the
command-line can be used:

AlarmServer -set_password org.csstudio.whatever/password=ThePassword

13.5. Required Plug-Ins, User Interface
The plugin org.csstudio.security defines the API for authentiation, authorization and secure
preferences.

The plugin org.csstudio.security.ui adds user interface elements. To the end user, this results
in tool-bar buttons for logging in and out as shown in Figure 13.1, “Authenticate to change alarm
configuration” as well as corresponding entries in the File menu.

By default, the user is automatically logged in when starting CSS based on information from the operating
system. The unix respectively windows JAAS configurations described before determine this initial
user identity. To prevent such automated log-in, use a JAAS configuration that does not include entries
named unix respectively windows.

The Log-in toolbar button or menu entry allows users to log in as a different user by using for example
LDAP or a File-based approach. Once logged in as a user different from the original, OS-authenticated
user, the Log-out toolbar button allows reverting to the OS-authenticated user.

There is a Security View that can be opened from the menu Window/Show View/Other..., then
selecting CSS/Security Info. This view displays information about the currently authenticated user
and her authorizations. Some alarm-related example actions can be invoked for testing their accessibility.

Figure 13.2. Security Info View

Authentication and Authorization

60

13.6. Configuring Authentication, Authorization
and Secure Preferences

The following example org.csstudio.security/preferences.ini explains the available
security-related settings.

For using them in a plugin_customization.ini file, note that each setting needs to be prefixed
with org.csstudio.security/. For example, instead of

jaas_config_file=/path/to/my/jaas.cfg

you need to use

org.csstudio.security/jaas_config_file=/path/to/my/jaas.cfg

In addition, some long lines have been reformatted with "\" to indicate that the following line should be
joined.

Security Settings

##
Authentication
##

Option 1:
Use a JAAS config file as in normal use of JAAS

Path to JAAS configuration file
When located inside a plugin, use
"platform:/plugin/name.of.plugin/path/within/plugin.conf"
jaas_config_file=platform:/plugin/org.csstudio.security/jaas.conf

Name of a JAAS login configuration to use.
This must match the name of one of the entries
in the jaas_config_file.
jaas_config_name=file

Option 2:
Do not use a JAAS config file.
Instead, provide what would the desired entry in the config file
as an Eclipse preference.
#
If the preference "jaas_config" is defined, it will have
precedence. "jaas_config_file" and "jaas_config_name" will
be ignored!

Format (all on one line!):
ModuleClass Flag option1=value1 option2=value2 ...; \
ModuleClass Flag ModuleOptions; ...
ModuleClass, Flag and value options are in the same format
as in auth.conf, but all on one line.
Value strings must be quoted.
#
Example (must be on one line!):
#jaas_config=com.sun.jmx.remote.security.FileLoginModule required \

Authentication and Authorization

61

debug="true" passwordFile="/path/to/my_passwords.conf";
jaas_config=

##
Authorization
##

Select authorization provider
#
Standard implementations:
FileBased, see
org.csstudio.security.authorization.FileBasedAuthorizationProvider
LDAPGroup, see
org.csstudio.security.authorization.LDAPGroupAuthorizationProvider
Script, see
org.csstudio.security.authorization.ScriptAuthorizationProvider
#
Additional providers can be added via extension point,
see org.csstudio.security.authorization.AuthorizationProvider
authorization_provider=FileBased

Path to FileBased authorization configuration file
authorization_file_name= \
 platform:/plugin/org.csstudio.security/authorization.conf

Path to command used by Script authorization
authorization_script_name=/usr/local/bin/id_auth

##
Secure Preferences
##

Where secure preferences are located.
#
"Default":
Use the default location, which is typically
the user's home directory.
@see SecurePreferencesFactory#getDefault()

Advantage: It's the default
Disadvantage: You won't always know where the preferences are.
#
"Instance":
Use the Eclipse 'instance', i.e. the workspace.

Advantage: You know where it is, and each workspace
will have its own settings.
Disadvantage: Each workspace has different settings.
#
"Install":
Use the Eclipse 'install' location,
i.e. where the product is installed.

Authentication and Authorization

62

Advantage: You know where it is, and every workspace for that
product will have the same settings. Good for a "global" setup.
Disadvantage: Ordinary users cannot
(should not) have write permissions.
secure_preference_location=Default

63

Chapter 14. Alarm System
This chapter introduces the CSS alarm system, specifically the “Best Ever Alarm System Toolkit” or
BEAST. It was developed based on experience with the original EPICS alarm handler ALH combined
with ideas from the book Alarm Management: Seven Effective Methods for Optimum Performance by B.
Hollifield and E. Habibi, published by ISA in 2007.

14.1. Motivation
The primary goal of the alarm system is simple:

Effectively help operators take the correct action at the correct time.

This is easier said than done! One way to accomplish this is to adopt the following guiding principles for
an alarm handling philosophy:

• Alarms are presented with guidance, related displays.

Lacking these, how can operators effectively react to an alarm?

• Manageable alarm rate

The number of alarms should stay below about 150 per day. If the alarm rate gets much higher, the alarm
system will no longer help operators take correct actions but instead overload them with information.

• Operators will respond to every alarm.

This is a corollary to the previous item: Assuming a manageable alarm rate, operators are expected to
respond to each alarm.

To implement such an alarm handling philosophy, a lot of effort needs to be put into defining useful alarms.
Each alarm must have guidance, clearly describing what operators need to do in response to an alarm.
There should not be any “bogus” alarms from systems that undergo maintenance, or that are currently
irrelevant for the operation of the machine. Alarms must not “chatter”, causing unnecessary noise by going
in and out of alarm. Operators need convenient access to the currently active alarms and their associated
information. The alarm system tools described in the following try to help:

• Alarms are presented in user-selectable ways: Table of current alarms, sorted as desired, but also a tree-
view, displaying all or only active alarms. In principle, additional views can be added.

• Each alarm is presented with additional information like guidance on how to handle the alarm. There
are links to related operator screens, web pages, and other CSS tools.

• The alarm system configuration can be edited from within the alarm system user interface.

14.2. Alarm Trigger PVs
The alarm system handles the display of alarms and associated information. The triggers of alarms are
simply Process Variables (PVs) in the control system, outside of the alarm system per se. The alarm system
monitors such PVs, and a non-normal severity will trigger an alarm.

In some cases, existing control system PVs that already have suitable limits can be used as trigger PVs
for the alarm system. In other cases, new PVs may have to be created to serve as alarm trigger PVs. For
EPICS, this can be done on IOCs associated with the respective subsystem of the machine, or in soft IOCs
that are purely meant to serve alarm trigger PVs. In any case, alarm trigger PVs must generate a non-
normal severity like “MINOR” or “MAJOR” to trigger an alarm.

Alarm System

64

14.3. Alarm System Behavior
The alarm system will typically latch alarms. This means that the alarm trigger PV can return to OK, later
re-enter the alarm state and so on, but the alarm system will only react when a PV enters an alarm state
for the first time. Subsequently, the alarm system user interface will display the current state of the PV,
but it will not trigger a new alarm nor issue another annunciation. This is meant to reduce noise from the
alarm system.

Once operators are able to react to the original alarm, operators acknowledge the alarm, and the alarm
trigger PV returns to normal, the alarm will clear. This is a typical time line:

1. Alarm trigger PV X enters an alarm state, for example with “MINOR” severity.

2. The alarm system will indicate a new MINOR alarm for PV X. If configured to do so, it will also
perform a voice annunciation of the alarm.

3. In a perfect world, the PV will stay in alarm until the underlying problem has been handled. In reality,
the PV may briefly leave the alarm state, for example as a result of noise in a sensor. The alarm system
will indicate this, but it still shows that there was a MINOR alarm with the time when it originally
happened. As the PV re-enters a MINOR severity, there is no new alarm annunciation because this is
considered part of the original alarm that has not been handled, yet.

4. Hopefully, operators can address the underlying issue soon, the alarm trigger PV returns to a normal
severity, and operators acknowledge the alarm.

5. The alarm clears. It does not matter if the PV returns to normal, then operators acknowledge the alarm,
or operators first acknowledge the alarm, then the PV returns to normal. The alarm will clear as soon
as both conditions are met: PV returns to normal, alarm has been acknowledged.

Alarms may be configured not to latch, which means there is no need to acknowledge them. As soon as the
alarm trigger PV returns to normal, the alarm will also clear. This mode of operation is primarily meant for
alarm trigger PVs that already latch within the control system. An example would be an alarm trigger PV
related to the “trip” condition of a device that requires a manual reset by operators to clear. That manual
reset of the device is functionally equivalent to acknowledging the alarm, because an operator has noticed
the condition and taken corrective action. The alarm trigger PV is unlikely to chatter because it latches
until the device is reset. Requiring operators to acknowledge the alarm in addition to resetting the alarm
trigger PV would cause unnecessary work.

One might be tempted to configure frequent alarms as non-latching to lessen the load on operators who get
tired of acknowledging such a nuisance alarm. Overall, however, it is better to re-engineer such alarms.
Add a filter to avoid alarms from brief occurrences of the symptom. Find a way to alarm on a precursor of
the frequent alarm, allowing operators to avoid running the machine in a state that will later cause frequent
occurrences of the nuisance alarm. Ideally, fix the underlying hardware or software to avoid the nuisance
alarm altogether.

Alarm System

65

14.4. Technical Overview
Figure 14.1. Alarm System Overview

Fundamental to the operation of the alarm system is the AlarmServer. It reads the alarm system
configuration from a relational database and monitors alarm system trigger PVs. Whenever a new alarm
occurs, it informs alarm system user interfaces (GUIs) via JMS. For alarms that should be annunciated, it
will inform annunciation tools via a designated JMS topic.

The Alarm Server performs the latching alarm behavior described in the previous section. As the severity
of an alarm trigger PV changes, the server updates the GUIs via JMS about the current state of the PV,
but it maintains the latched alarm state.

When operators acknowledge an alarm in the GUI, they are sending an acknowledge request via JMS to
the Alarm Server. The server will in turn reply with the updated, eventually the cleared alarm state.

In addition to sending state updates via JMS, the Alarm Server also updates the alarm state in the relational
database. This is done to allow newly started alarm GUI clients to obtain the initial state of all alarms. The
persisted alarm state in the RDB also allows for Alarm Server restarts without loosing the alarm state.

Alarm GUI clients can change the alarm system configuration in the RDB. They use JMS to notify the
Alarm Server and other GUI clients about the change, who then in turn read the updated configuration
from the RDB.

As described, all alarm traffic passes through JMS: Alarm state updates, annunciations,
acknowledgements, configuration changes. A generic JMS-to-RDB logger can thus capture all alarm
traffic into an RDB for later review and anaysis, for example: What happened when? Which alarm was
most frequent?

Alarm System

66

Alarm Tree “Root”
The RDB can hold more than one alarm system configuration. Each alarm configuration is identified by
the name of its “Root” element, for example CCR for a Central Control Room configuration.

The Alarm Server and associated user interface clients must use the same alarm tree root. They will
construct the names of JMS topics used to communicate by adding suffixes to the alarm tree root name.
For example, with an alarm tree root of CCR, the server and clients will use the following JMS topics:

• CCR_SERVER: Used by the server to send alarm state updates to clients.
• CCR_CLIENT: Used by clients to send acknowledgement requests or configuration change

notifications to the server.
• CCR_TALK: Used by the server to send annunciation messages to annunciators.

Multiple Parallel Alarm Configurations
Exactly one alarm server needs to be running for each alarm system configuration, i.e. for each alarm tree
root. Clients are bound to a specific alarm configuration via a preference setting that selects their alarm
tree root name. Optionally, it is possible to enable users to change the alarm configuration at runtime via
a selector in the Alarm Tree display.

“Global” Alarms
The following is under development, not in operational use:

An alarm server can send information about alarms that stay un-acknowledged for a configurable time to a
“GLOBAL_SERVER” alarm topic in JMS. A corresponding global alarm table user interface can display
such alarms and allow operators to quickly switch to that alarm system configuration, where they then
have access to the alarms guidance etc.

The use case for this is a central control room combined with several auxiliary, sub-system-specific control
rooms. For example a cryogenic or conventional facility control room in addition to a bigger “main” control
room. Most of the time, the auxiliary control rooms use their own alarm system configuration, specific to
their needs, and all alarms are handled locally.

At night or on weekends, however, the auxiliary control rooms are not manned. At those times, alarms
are not locally acknowledged, and after some timeout they will appear in the global alarm table of the
main control room.

A listener to JMS messages on the GLOBAL_SERVER topic can also be used to trigger automated email
notifications or send cell phone text messages in response to unhandled, i.e. un-acknowledged global
alarms.

14.5. Relational Database Setup
Before using the alarm system tools, you need to create the required table structure in your
RDB, see also Chapter 10, Relational Database (RDB). Refer to the sources for the plugin
org.csstudio.alarm.beast. Its dbd subdirectory contains schema definitions for MySQL, Oracle
and PostgreSQL. Pick the file that is appropriate for your RDB, and execute the commands listed in the file.

When done, you should have the alarm tables defined in your RDB. You have to use basic RDB
administration skills to create a user and password for an account that the alarm tools can use to read and
modify the alarm system configuration.

Alarm System

67

14.6. Building the Tools
You need these command-line tools:

org.csstudio.alarm.beast.configtool/AlarmConfigTool.product
org.csstudio.alarm.beast.server/AlarmServer.product

For first tests, you can run both tools from within the Eclipse IDE as described in Chapter 4, Compiling,
Running, Debugging CSS, Section 4.7, “Using the Eclipse IDE”, but note that you will have to provide
command-line arguments to them. After first tests are successful, you can export them from the IDE as
described in the same section.

Finally, you will need to include the alarm system client GUI (Alarm Table, Alarm Tree, Annunciator)
into your end-user CSS product.

14.7. Authentication and Authorization
The Alarm Config Tool and the Alarm Server obviously need an account with write access to the alarm
tables in the RDB because they modify the alarm configuration or state.

The alarm client GUI (Alarm Table, ...) is primiarily read-only, so a corresponding read-only RDB account
would be sufficient. The GUI does, however, use CSS CSS authentication and authorization to allow a
user to “Log On”, and qualified users are then permitted to modify the alarm configuration. It is in fact a
prime feature of the alarm system that selected users can modify the alarm configuration on-line. For this
to function, the CSS alarm GUI acutally requires an RDB account with write access. The CSS alarm GUI
should therefore be provided with a write-access RDB account, and CSS authentication and authorization
is then used to limit the use of that account within CSS.

The alarm GUI uses these Authorization IDs:

• alarm_ack - Users with this authorization can acknowledge alarms.

• alarm_config - Users with this authorization can edit the alarm system configuration.

For initial tests, you can configure CSS authentication and authorization to use a “dummy” mode where
every user can authenticate and gain these rights. Eventually, however, you might want to configure proper
authentication and authorization. Refer to Chapter 13, Authentication and Authorization for details.

14.8. Alarm System Preferences
Most of the alarm system related preference settings are explained and listed with their defaults in the
file preferences.ini of the plugin org.csstudio.alarm.beast. You will have to adjust the
following, most important settings settings for your site:

• URL, user, password and schema for connecting to the RDB that holds your alarm configuration. See
Section 10.4, “RDB URLs and Schemata”.

• URL of your JMS server.

• Name of your alarm tree “Root”.

This is typically done by adding the site-specific settings to the plugin_customization.ini file
of your product, see Chapter 6, Hierarchical Preferences. For command-line tools like the alarm config
tool you can also create a file settings.ini as mentioned below.

Alarm System

68

14.9. Creating New Alarm Configuration, Bulk
Modifications

Each alarm setup starts with a new, empty configuration in the RDB. The CSS alarm user interface will
then allow to edit that configuration, but the initial, empty configuaration needs to be created in the RDB.

One way to create a new configuration is an SQL shell. Assume you want to create a configuration called
“demo”, first check that it does not already exist:

SELECT * FROM ALARM_TREE
 WHERE NAME='demo' AND PARENT_CMPNT_ID IS NULL;

Find the next available component ID:

SELECT MAX(COMPONENT_ID) FROM ALARM_TREE;

Then create a new alarm tree root like this, remembering to use the next available component ID:

INSERT INTO ALARM_TREE (NAME, COMPONENT_ID)
VALUES ('demo', 1021);

While such direct SQL manipulations will work, it may be easier to use the AlarmConfigTool.
The Alarm Config Tool can import alarm configurations from an XML file format. A minimal, empty
configuration with name “demo” would look like this, usually saved to a file called demo.xml:

<config name="demo">
</config>

The sources for the plugin org.csstudio.alarm.beast.configtool contain a schema file for
the alarm configuration XML file format, AlarmConfigurationSchema.xsd. This can be used as
a reference or to check an alarm configuration XML file with XML tool before importing it via the alarm
config tool.

To import such an XML configuration file into the RDB, issue the following command, assuming that you
have a file settings.ini that holds your site-specific RDB connection parameters:

AlarmConfigTool -pluginCustomization /path/to/my/settings.ini \
-import -root demo -file demo.xml

The config tool has more command-line options to list available configurations or to export a configuration
to a file:

Display all parameters
AlarmConfigTool -help

List alarm tree root names
AlarmConfigTool -list

Export alarm configuration to XML file
AlarmConfigTool -export -root demo -file demo.xml

While it is usually most convenient to edit an alarm configuration from the alarm client user interface,
bigger changes to the alarm configuration are sometimes easier by exporting the existing configuration to
an XML file, editing it, then re-importing it. The AlarmConfigTool is meant to handle such bulk-imports
of the complete alarm configuration.

Alarm System

69

To perform partial changes of the alarm configuration, the AlarmConfigTool has the -delete option to
remove a subtree of the configuration. You need to specify the complete path to the element that ought
to be removed:

AlarmConfigTool -root demo -delete /demo/area1/system2

To remove a complete alarm tree, name the configuration and remove its root element:

AlarmConfigTool -root demo -delete /demo

If is possible to modify an existing configuration via the -modify command. It will load an XML file and
add newly listed items from the XML file to the alarm configuration, or update the guidance messages,
related displays etc. of existing items in the configuration. It can not move items from existing locations to
new locations in the tree, and you cannot add the same trigger PV name to different sections of the tree. For
such wider ranging changes you will have to export, edit and then re-import the complete configuration.

Note that the AlarmConfigTool only updates the database! If you are already using the alarm
configuration, you should stop the AlarmServer and CSS alarm displays before performing such database
updates, then start them back up when the database modifications are completed. If you update the alarm
configuration from the CSS alarm GUI, all parts of the alarm system are notified about these changes so that
they can update accordingly. Direct changes to the alarm database via SQL access or the AlarmConfigTool,
however, go unnoticed by the AlarmServer and GUI clients, so you need to restart them.

14.10. Putting it all together
So far, we described the alarm system in general as well as the setup of its infrastructure. In the following
sections, we will describe how to run the alarm server and how to use the alarm client GUI.

Since this is a distributed system, it is important to remember its components:

• Control System: Often overlooked when you create your first alarm system test setup, you need for
example an EPICS soft IOC that creates alarms.

• Configuration in RDB: Previous sections described the RDB table setup and how to use the Alarm
Config Tool to create an initial alarm system configuration.

• JMS Server: See Chapter 12, Java Message Server how to start JMS. The Alarm Server and the Alarm
GUI need to be configured with the URL of your JMS server to communicate.

• Alarm Server: Its operation will be described in the following sections.

• CSS Alarm GUI: Your CSS product needs to include the alarm tree and alarm table plugins to allow
access to the alarm system. In addition, at least “dummy” authentication and authorization needs to
be configured to permit changes to the alarm configuration from the client GUI. See Chapter 13,
Authentication and Authorization.

14.11. Alarm Server
The Alarm Server reads an alarm configuration, monitors the PVs of that configuration and notifies alarm
clients about changes in the alarm state. It persists the alarm state in the RDB. For example, information
about latched alarms is written to the RDB. When the Alarm Server is stopped and re-started, it will
initialize from the RDB and learn about the previous state of all alarms. This way a previously latched
alarm is recognized and not reported as a new alarm.

The Alarm Server is a command-line tool that is configured via Eclipse preferences, i.e. usually via a
customization file like this:

AlarmServer -consoleLog -pluginCustomization /path/to/alarm_server.ini

Alarm System

70

The alarm server plugin org.csstudio.alarm.beast.server includes an example plugin
customization file plugin_customization.ini:

Alarm System 'root', i.e. configuration name
org.csstudio.alarm.beast/root_component=Annunciator

Alarm System RDB Connection
org.csstudio.alarm.beast/rdb_url=jdbc:mysql://localhost/alarm
org.csstudio.alarm.beast/rdb_user=alarm
org.csstudio.alarm.beast/rdb_password=$alarm
org.csstudio.alarm.beast/rdb_schema=ALARM

Alarm System JMS Connection
org.csstudio.alarm.beast/jms_url=failover:(tcp://localhost:61616)
org.csstudio.alarm.beast/jms_user=alarm
org.csstudio.alarm.beast/jms_password=$alarm

Alarm Server: Period for repeated annunciation of active alarms
org.csstudio.alarm.beast.server/nag_period=00:15:00

Channel Access
Network traffic can be optimized by only monitoring ALARM updates
org.csstudio.platform.libs.epics/use_pure_java=false
org.csstudio.platform.libs.epics/monitor=ALARM
org.csstudio.platform.libs.epics/addr_list=127.0.0.1

Logging preferences
org.csstudio.logging/console_level=CONFIG
org.csstudio.logging/jms_url=

For more on the Eclipse preference mechanism, see Chapter 6, Hierarchical Preferences.

If you started the Alarm Server successfully, its terminal output should resemble this, displaying the JMS
topics used by the alarm server:

Alarm Server 3.0.0
Configuration Root: demo
JMS Server Topic: demo_SERVER
JMS Client Topic: demo_CLIENT
JMS Talk Topic: demo_TALK
JMS Global Topic: GLOBAL_SERVER
Read 50003 PVs in 1.69 seconds: 29589.0 PVs/sec

The alarm server communicates with the alarm GUI via JMS messages described in the following
section. The alarm GUI will either show alarm updates, or it will indicate a server timeout if the
alarm server does not communicate. To debug the setup, the JMS Monitor (Chapter 33, JMS Monitor -
org.csstudio.debugging.jmsmonitor) can be used to monitor the JMS server, client and talk topics. The
JMS server topic should show alarm state changes or at least periodic IDLE messages.

14.12. Alarm System JMS Message Types
The Alarm Server sends this type of JMS MapMessage for alarm state changes:

• TYPE: Set to “alarm” to identify as alarm message.
• TEXT: STATE in normal mode, STATE_MAINTENANCE in maintenance mode.

Alarm System

71

• CONFIG: Name of the alarm configuration, i.e. alarm root.
• NAME: PV name that has changed alarm state
• CURRENT_SEVERITY: Current severity of the PV.
• CURRENT_STATUS: Current status of the PV.
• SEVERITY: Alarm severity of the PV. For latched or acknowledged alarms, this can differ from the

current severity.
• STATUS: Alarm status of the PV.
• EVENTTIME: Time of the original alarm, i.e. when SEVERITY became active.
• APPLICATION_ID: AlarmServer.
• HOST: Host name running the alarm server.
• USER: Name of user who is running the alarm server.

In the absense of alarm state changes, the Alarm Server sends an IDLE message, by default every 10
seconds. If the alarm client GUI does not see any message from the alarm server for twice the IDLE period,
it declares a server timeout.

• TYPE: Set to “alarm” to identify as alarm message.
• TEXT: IDLE in normal mode, IDLE_MAINTENANCE in maintenance mode.
• CONFIG: Name of the alarm configuration, i.e. alarm root.
• APPLICATION_ID: AlarmServer.
• HOST: Host name running the alarm server.
• USER: Name of user who is running the alarm server.

Alarm clients send this message to acknowledge or un-acknowledge an alarm:

• TYPE: Set to “alarm” to identify as alarm message.
• TEXT: ACK respectively UN-ACK.
• CONFIG: Name of the alarm configuration, i.e. alarm root.
• NAME: PV name
• APPLICATION_ID: CSS.
• HOST: Host name running CSS.
• USER: Name of user who is running CSS.

Alarm clients send this message to enable or disable maintenance mode:

• TYPE: Set to “alarm” to identify as alarm message.
• TEXT: MODE.
• VALUE: MAINTENANCE or NORMAL.
• CONFIG: Name of the alarm configuration, i.e. alarm root.
• APPLICATION_ID: CSS.
• HOST: Host name running CSS.
• USER: Name of user who is running CSS.

After modifying the alarm configuration, alarm clients send this message to the server:

• TYPE: Set to “alarm” to identify as alarm message.
• TEXT: CONFIG.
• CONFIG: Name of the alarm configuration, i.e. alarm root.
• NAME: Path to the modified configuration item.
• APPLICATION_ID: CSS.
• HOST: Host name running CSS.
• USER: Name of user who is running CSS.

Alarm System

72

Note that other clients are also listening to this message, so the server as well as other clients will react
by updating their configuration from the RDB. If the path contains a specific configuration item like “/
area/system/subsystem/pv”, only the configuration for that item needs to be updated from the RDB. If the
path is empty, a bigger change to the configuration means that the complete alarm configuration needs
to be updated from the RDB.

14.13. Alarm Tree View
The Alarm Tree display can be opened from the menu CSS, Alarm, Alarm Tree. It is the primary
display for viewing and configuring the complete alarm tree.

Figure 14.2. Alarm Tree

The alarm tree displays the hierarchical structure of the alarm system. Alarms are arranged into

• Areas - Top-level elements of the alarm hierarchy.
• Systems, Subsystems - Below the top-level areas, there can be multiple levels of systems and subsystems

to organize your alarm configuration.
• PVs - Finally, the alarm trigger PVs generate actual alarms.

It is suggested to use physical areas, because that way the general localization of an alarm in the machine is
obvious. The systems or subsystems could for example be Vacuum or Cooling, i.e. again physical systems
of your machine.

When configuring the guidance or related displays of an item in the alarm configuration, this will affect
all entries below the respective item. For example, when adding a display link to an area, this link will
be available for each system, subsystem and PV below that area. This way it is easy to assign overview
displays for an area, or add guidance with contact information for a system to those elements in the alarm
tree without need to duplicate the information for each PV.

Alarm System

73

The alarm tree needs to be used to add, rename or remove entries of the alarm configuration. To operators,
the alarm tree can be useful if many alarms are active, because its hierarchical view can allow operators
to identify the affected areas or subsystems better than a plain list of alarms could do.

For details on how to use the alarm tree, refer to its online help.

14.14. Alarm Table View
In an ideal operational setup, there are only very few alarms. If alarms trigger, they may be from very
different areas of the machine. In this scenario, operators are often not interested in all the possible alarms
as they are displayed by the Alarm Tree. Instead, they only need to know the currently active alarms.

Figure 14.3. Alarm Table

The Alarm Table display is the primary operator interface to the alarm system in an operational setup for
a machine that is generally running fine. Most of the time, the alarm table will be empty, because there are
no alarms. If alarms occur, the alarm table allows operators to inspect them quickly.

For details on how to use the alarm table, refer to its online help.

Alarm System

74

14.15. Alarm Area Panel
The Alarm Area Panel can be used as a top-level display of the current alarm state. A preference setting
of the panel is used to configure which level of the alarm tree hierarchy it should display.

Figure 14.4. Alarm Area Panel

It will typically be used to display the first level of the alarm hierarchy, that is all “Area” components of
the alarm tree. For each area, it displays the name, coloring the panel to indicate the alarm state of that
area as in Figure 14.4, “Alarm Area Panel”.

The tool can also be used to display a single panel with the alarm state of the overall alarm tree, i.e. the
root element, by configuring it to use level 0 of the alarm tree hierarchy. When set to level 2 of the alarm
tree, it will display all “System” components. With level 3 it would display all “Sub-System” components,
but this and higher alarm tree components are not useful in practice.

For details on how to use the alarm table, refer to its online help.

14.16. Annunciator
This tool performs voice annunciation of alarms. It usually listens to the JMS ..._TALK topic associated
with an alarm tree configuration and speaks received alarms to the operator.

The annunciator can be configured to listen to one or more topics. It will typically listen to one specific
alarm tree ..._TALK topic like CCR_TALK, but in principle it can listen to talk topics from multiple
alarm tree configurations. It could also annunciate messages that are sent to JMS topics by means other
than the alarm system.

Alarm System

75

Figure 14.5. Annunciator View

The annunciator is available in two forms:

• Eclipse View: The Annunciator view can be opened from the CSS Alarm menu as long as your CSS
product includes the plugin org.csstudio.alarm.beast.annunciator.

• Headless Application: The Annunciator application is started from the command line. To create the
headless executable, export the Annunciator.product product from the annnuciator plugin. The
headless annunciator application is also referred to as JMS2SPEECH.

The annunciator view is convenient for use within CSS and has the added advantage of displaying a list of
recently received alarm messages. It will, however, stop annunciating as soon as the annnuciator view is
closed or hidden. It is therefore important to keep the annunciator view visible to assert that it can perform
annunciations.

The annunciator view offers two buttons it its toolbar: One to temporarily silence alarms, the other to clear
the list of past annunciations.

The headless Annunciator application needs to be launched separately from the CSS user interface, but
has the advantage that it will annunciate even when the CSS user interface is closed. For end users, the
annunciator view may be more convenient, but in a control room it is suggested to run at least one copy
of the headless Annunciator application.

The annunciation of a message takes some time. When several messages are received for annunciation,
they are ordered by their severity. When too many messages arrive, especially from the alarm system,
there is usually little use in annunciating them because the bigger message is: There are MANY messages,
do something about it! If the queue length exceeds a configurable threshold, the queue is therefore cleared
and only a single “There are ... more messages” statement is announced.

Preferences
Either version of the annunciator is configured via preferences. Refer to the preferences.ini file of
the annunciator plugin or the CSS preference GUI when using the view to configure the following, where
the first two are essential for the operation of the tool:

• URL of the JMS server from which the annunciator receives messages.
• JMS topics to which it listens. This is a comma-separated list like CCR_TALK, Demo_TALK
• Translations file. This file can be used to provide pronunciation help. Refer to the online help for details.
• List of message severties, separated by comma, ordered by priority (highest first) to define how the

annunciator should prioritize when receiving several concurrent messages.

Alarm System

76

• Threshold for ignoring flurry of messages. When more than this number of messages queue up, a shorter
“There are .. more messages” statement is annunciated.

• The number of messages kept in the Annunciator View display of recent messages.

Also note the separate preferences of the speech library mentioned below.

Message Texts
Fundamentally, messages are annunciated as received. The alarm server will usually include the alarm
severity in the message. For example, an alarm with description

Low Water Pressure

will be annunciated as

"MINOR alarm: Low Water Pressure"

when it enters a MINOR alarm state.

If an alarm description starts with an asterisk as in

*Low Water Pressure

the alarm server will use the description as given. It will not prefix it with the alarm severity. A PV with
above Description thus results in just announcing

"Low Water Pressure"

In addition, descriptions starting with an asterisk can include the following formatting elements:

• The text {0} is replaced with the current alarm severity.
• The text {1} is replaced with the value of the trigger PV that caused the alarm.

For example, a PV with description

*{0} alarm: Low Water Pressure

would again result in an annunciation

"MINOR alarm: Low Water Pressure"

The effect would be the same as having used the default annunciation format without *.

By using the * format, however, you can also use descriptions like

*{0} water alarm, level is {1} gallons

which will result in an annunciation similar to

"MINOR water alarm, level is 3.142 gallons"

The format elements can be in any order. For example, the value can be used before the alarm severity.
The description

*Water below {1} gallons, {0} alarm

will result in an annunciation similar to

"Water below 3.142 gallons, MAJOR alarm"

We mentioned that messages will be suppressed when too many messages arrive. Very important messages
can be prefixed with an initial exclamation mark:

!Running low on cookies

Such messages will always be annunciated and not be dropped when there too many other messages.

Alarm System

77

When combining the formatting element * and the ! to prevent suppression, note the required order. You
have to use

*!My description ...

i.e. first the *, then the !.

Speech Systems
The annunciator uses the plugin org.csstudio.utility.speech for the text-to-speech
conversions. That plugin can be configured to use either the pure Java FreeTTS library that it provides,
an external tool, or a UDP server.

Refer to the preferences.ini of the utility.speech plugin for available options.

When selecting the external tool, a program called say is expected to be found on the PATH. It must accept
the text to annunciate as a command line argument. On Mac OS X, such a say command is already part of
the operating system. On Linux computers, one can often use the following shell script to invoke festival:

#!/bin/sh
#
Example 'say' script for Linux

echo "$@" | festival --tts

When selecting the UDP server, you also need to configure the hostname or boradcast address and port
number of the UDP server, again refer to the preferences.ini of the utility.speech plugin. The UDP
server will receive each annunciation as a seprate UDP packet.

Active Alarms Annunciation
The alarm server will issue one annunciation for each new alarm that is configured to be annunciated. If
operators miss an annunciation, we generally assume that they were distracted by more important tasks.
Once they have time, they can inspect the alarm GUI for new alarms, for example from the time-sorted
alarm table, or consult the list of recent messages in the annunciator.

Annunciations are not repeated, because in general we try to minimize the noise generated by the alarm
system. Sometimes, however, it can be useful to remind operators that there were alarms that they might
have missed.

The nag_period configuration parameter of the alarm server instructs the alarm server to generate
periodic voice annunciations

"There are ... active alarms"

whenever there are active, that is un-acknowledged alarms. The default nag_period of 00:15:00
causes this annunciation to be performed every 15 minutes.

Whenever operators acknowledge or un-acknowledge an alarm, or change the alarm configuration, or
if there is a different annunciation, the timer for active alarm reminders is reset. In normal operation
of the alarm system where operators acknowledge alarms, or while there are other annunciations that
we assume are heard by operators, there will therefore be no reminder. On the other hand, if operators
have not interacted with the alarm system, not acknowledged any alarms, now were there any other new
annunciations, yet there are still active alarms, this reminder will help operators every 15 minutes to notice
that something happened that they might have missed.

The active alarm reminders can be disabled by configuring the nag_period as 0.

Alarm System

78

14.17. JMS Alarm Log
The JMS2RDB tool described in Chapter 35, RDB Logging - org.cstudio.logging.jms2rdb can be used to
log all alarm traffic to the RDB. This way, detail of alarm state changes and operator acknowledge actions
will be available in the CSS log for later analysis. The message history display described in Chapter 31,
Message History Browser - org.cstudio.alarm.beast.msghist allows direct access to the log, although it
can be time consuming the decode the raw messages.

At the SNS, a JSP-based collection of reports can display how many alarms were active over the last days
or weeks, which alarms represent the “Top 10” of the most frequent alarms, and how one alarm behaved
in detail, including histograms of alarm durations.

This reporting package, however, is currently part of a bigger, more SNS-specific reporting package.
Contact Kay Kasemir if you are interested in collaborating on a more portable version of these reports.

79

Chapter 15. BOY Operator Display
The Best OPI, Yet (BOY) is an operator interface editor and runtime. To end users, this might be the most
interesting component of CSS. It can be the primary user interface to the control system: Start CSS, then
open BOY displays to monitor and control the system. BOY also makes it fairly easy for end-users to
create their own operator interface displays.

Figure 15.1. Example of BOY Widgets

BOY includes extensive online help that covers everything from first steps to extending BOY by
implementing your own custom widgets. Go through the installation of the example display files and
the “Getting Started” section of the online help, because this chapter will not duplicate that information.
Instead, we concentrate on setup suggestions.

15.1. Setup
To use BOY, your CSS product needs to include the org.csstudio.opibuilder.* plugins and
their dependencies. The converter plugins described in Section 15.3, “Converters” are optional.

BOY Operator Display

80

You should prepare the following files for your site and place them in a location that is accessible by all
users.

• Color definitions - A file that defines color macros.

• Font definitions - A file that defines font macros.

• Schema - An *.opi file that defines defaults for widget properties.

• Top OPIs - A list of *.opi shortcuts.

The definition of color and font macros allows you to create uniform display files. By using a macro
Background for the display background color and a macro Title for the font of a title label your
display files will appear consistent. In addition, you can later adjust colors and fonts by simply updating
the definition file instead of having to edit each individual display.

You can start with the files that are included in the BOY examples, i.e. /BOY Examples/color.def
and /BOY Examples/font.def, but copying them into a location is accessible by all CSS installations
at your site.

The files could be in a network file system location, but since the detailed path name syntax for such shared
file system location often differs between operating systems, a web location might be more practical. BOY
can read files from http://, https:// and ftp:// URLs.

Note that the fonts listed in the font definition file need to be fonts that are actually available on the
computer that executes CSS, but available fonts differ between operating systems. The font definition file
allows you to specify different values depending on the operating system, for example

// Title Font for Linux GTK
Title(linux_gtk) = Sans-bold-18
// Title Font for MacOS
Title(macosx) = Lucida Grande-bold-18

A practical solution for display files that need to look the same across platforms can be the use of Microsoft
Office fonts. Windows and Mac OS X computers that have Microsoft Office installed already provide these
fonts, and they are also available for Linux, see http://corefonts.sourceforge.net. But even with same fonts
installed there can be slight differences. For example, the OS X version of Microsoft Office fonts seem to
use a different size, for which you can compensate in the font definition file by using OS-specific settings:

// Title Font for Windows and Linux
Default=Verdana-regular-10
Default(linux_gtk)=Verdana-regular-10
// OS X needs different size to get same look
Default(macosx_cocoa)=Verdana-regular-14

The Scheme file allows you to define the defaults for widget properties in newly created OPI files. For
example, you can use a schema file to use macro names for the default fonts and colors of widgets.

The default for the Top OPIs will point to the BOY example files like /BOY Examples/main.opi.
You probably want to adjust them to load certain top-level OPI files of your site, like http://
my_opi_server/opis/start_screen.opi

15.2. Team Support
By including Eclipse “Team” support like the Concurrent Versions System (CVS) or support for another
version system, you can keep your OPI files in a software repository, then check them out into the CSS
workspace, edit them there, and commit changes back to the repository.

http://corefonts.sourceforge.net

BOY Operator Display

81

15.3. Converters
The plugin org.csstudio.opibuilder.converter can convert *edl displays of
the EPICS Extensible Display Manager (EDM) to the BOY *.opi file format, and
org.csstudio.opibuilder.adl2boy performs this for *.adl displays of MEDM.

Such conversions are naturally limited because a converter can only attempt a basic translation of for
example rectangles in an EDM display into rectangles in a BOY display. It cannot tell if the rectangles in
the EDM display were meant to create a visual group of widgets that are better transformed into a Grouping
Container widget in BOY.

82

Chapter 16. Site-Specific Products
This chapter describes how and why Plug-ins get combined into a Product that is specific for a site.

As already explained in Section 2.2, “Java, Eclipse, RCP”, a product combines selected Plug-ins with
configuration files and an OS-specific launcher.

There are several CSS products: Archive Engine, Archive Config Tool, Alarm Server, Alarm Config Tool
are all examples for CSS products. When we talk about The CSS Product, however, we usually refer to
the CSS user interface product that the end users see. A product that is just called css or maybe css-
xyz because it has been pre-configured for users at an institute called XYZ. A product that includes Probe,
Data Browser, maybe the alarm table and tree displays.

Why is there more than one CSS product? Why can it be difficult to select the required Plug-ins?

Figure 16.1. Composition of a Product

16.1. Site-Specific Plugin Selection and
Settings

Plug-ins contain the Java code and associated content like online help for some CSS functionality. One
example would be a databrowser Plug-in that implements the Data Browser. System integrators at
different sites might prefer some Plug-ins over others, for example one operator interface tool over another.

A product is a collection of the plugins chosen for use at a site. A product definition file can in fact directly
list the desired plugins. In practice, however, plugins are usually first combined into Features, and the
product is then assembled from these features. Features allow grouping of plugins by functionality. This
way it is easier to add or remove a certain functionality from the product.

For example, an optional feature can list plugins that are not needed by every user of a product. When
building the product, such an optional feature may be excluded from the product, but it is made available in
an online update repository. Users who down-load the product can then add the optional feature as desired
via the Help, Install New Software ... menu.

Site-Specific Products

83

Products also contain the default settings, the plugin_customization.ini file described in
Chapter 6, Hierarchical Preferences. To users of CSS it is most convenient when the suitable settings for
their site, for example EPICS Channel Access addresses, web links, LDAP server hosts for authentication
are already “built in”, so that there is usually no need to adjust any preference settings after installing CSS
onto their office computer.

When a site needs basically the same collection of plugins, i.e. one product, but with different settings to
support for example different networks where the product is used, there are two options:

1. Build different products.

These products are assembled from the same features and plugins, but since they include different
plugin_customization.ini files, they are in the end different.

This option might be most convenient to end users because they have a product that works for them out
of the box, but is more work for the maintainer of these products.

2. Build one product with several *.ini files.

Since fundamentally only different versions of the plugin_customization.ini are needed,
simply include several in the product plugin:
• plugin_customization.ini - Shared settings.
• main_control_room.ini - Adjustments for the main control room.
• test_network.ini - Adjustments for the test network.
• ... maybe more.

These configuration files can be offered as separate downloads from the web site, or they can be included
in the product plugin. In the latter case, it can be helpful to keep the product plugin un-packed:

In the feature that adds the product plugin to the overall product configuration, assert that the product
plugin is not packed into a *.jar file but left as an unpacked directory. In the feature editor this is
done by checking the option to “Unpack the plug-in archive after the installation”. In the feature file
itself, the product plugin should then not include the option

unpack="false"

Either way, users now have various *.ini files available and can run the product with the appropriate
one from the command line:

css -pluginCustomization /path/to/e.g./test_network.ini

You can also prepare batch files or shell scripts that start the product with these customization files.

This option is more convenient for the maintainer of the product because it remains one product, but
requires end users to run CSS with the correct *.ini file resp. starter script.

So it may be obvious by now that most sites need a custom-built CSS product to provide a site-specific
selection of plugins with suitable default settings. There is one more reason to publish your own product:

CSS instances can self-update from a repository. Users will see a notice that updates are available, and
CSS will restart after installing them. In an operational setup it is typically of advantage to control which
updates become available when and how, which means that each site that uses CSS will need its own, local
update server from which its CSS instances pull updates that apply to their local CSS product.

16.2. Plug-in Dependencies
A plug-in can depend on other plug-ins. For example, a data plotting plug-in depends on others which
provide access to archived data, to live data, and it also depends on a plotting plugin. When adding a

Site-Specific Products

84

plotting plugin to a product, such direct dependencies are obvious and Eclipse can help to add them to the
product. There are, however, additional dependencies that Eclipse cannot automatically determine.

For example, the plug-in on which the plotting tool directly depends to read archived data only defines the
programming interface for reading historic data. CSS is designed to support multiple sources of archived
data, for example the XML-RPC network data server of the Channel Archiver but also an RDB-based
archive. Some sites use the former, others the latter, some might use both and other sites might use an
entirely different archive data store. Similar examples exist for access to an electronic log-book, or to
reading live control system data.

Eclipse cannot automatically decide which implementing plug-in are necessary at a site, so it is up to the
creator of a CSS product to select among the available plug-ins that implement access to archived data,
a log book or live data. She might even need to implement a new, site-specific way of reading historic
data or writing to a log book.

16.3. Features
As just described, we often need more than one plug-in to provide a certain functionality, for example the
databrowser plug-in with its immediate dependencies combined with a site-specific selection of log
book, live and historic data implementations. Directly listing all plug-ins in a product configuration would
result in a long list that is hard to maintain.

A feature is simply a list of related plug-ins, for example all plug-ins that a site uses for the Data Browser
functionality. Features can also be used to modularize the head-less built, and features can appear as
separate, optional components in an update repository, allowing end users to install them into their CSS
product on demand.

16.4. Creating a Product
We will now walk through the steps of creating a custom product. In the end, there will only be very little
code. After all the whole point of CSS is that you can use existing plugins without having to implement
everything yourself.

But unfortunately there are many pitfalls when assembling a product. It can be helpful to start small, for
example try to assemble a product that only includes Probe, and get that to function as desired. Adding
many more plugins for the Data Browser, operator interface etc. will then be comparably easy.

Fundamentally, an RCP Product is a plugin that implements the
org.eclipse.core.runtime.applications extension point, and has a *.product file. The
application extension point represents the “main” routine of the program, and the product file lists all
plugins that you want to include in your product.

A CSS application should create a workbench window with certain menus into which other CSS plugins
can then add their entries. Similarly, it needs to create a skeleton for the online help and preference system.
Existing CSS plugins can be used to provide these.

New Product Plug-in
Create a new plugin. The suggested name is org.csstudio. followed by your site name and ending
in .product, for example org.csstudio.mysite.product.

Add these dependencies:

org.eclipse.core.runtime Defines the application extension point.

Site-Specific Products

85

org.eclipse.ui.intro,
org.eclipse.ui.intro.universal

Will later be used to implement the “Welcome” screen.

org.csstudio.startup Provides basic CSS-compliant application code.
org.csstudio.utility.productProvides extensions to the basic CSS-compliant application code.

Fundamentally, the application code of an RCP product is allowed to do pretty much anything.
CSS end-user products, however, are expected to have a main window, a menu bar as described in
Chapter 26, CSS menus - org.csstudio.ui.menu, and support for online help. A CSS product should
support opening documents from the command line, see Chapter 29, Opening Files from Command-Line -
org.csstudio.openfile. To simplify the creation of a compliant product, the org.csstudio.startup
plugin provides the essential application code and extension points for customizing it according to local
needs. Commonly used implementations of these extension points in turn are provided by the plugin
org.csstudio.utility.product. Using these two plugins, a site-specific product can often be
created without having to implement any application code.

Implement Application
In the new product plugin, extend the org.eclipse.core.runtime.applications extension
point. As an ID, you can simply enter “application” which will result in a complete
ID of org.csstudio.mysite.product.application. Add a “run” element with value
org.csstudio.startup.application.Application, i.e. use the skeleton implementation
from the CSS startup plugin.

The plugin org.csstudio.startup defines an extension point for customizing the behavior
of its application code. In the new product plugin, extend this point which is called
org.csstudio.startup.module and add parameters to it so that the corresponding section of your
plugin.xml file looks as follows:

<extension point="org.csstudio.startup.module">
 <startupParameters
 class="org.csstudio.utility.product.StartupParameters">
 </startupParameters>
 <project
 class="org.csstudio.startup.module.defaults.DefaultProject">
 </project>
 <workbench
 class="org.csstudio.utility.product.Workbench">
 </workbench>
</extension>

The startup parameters code will parse command-line parameters. The default project code asserts that
your product has at least one “CSS” project in its workspace. The workbench code, finally, is the most
important part: It opens the window, configures it, and executes the main loop of the RCP application.

Add Product Definition
Use the IDE wizard to create a new “Plug-in Development”, “Product Configuration” in your product
plugin. When editing the generated .product file, one of the first things you can set in the “General
Information” section of the “Overview” tab of the product editor is the Name of your product. You should
use “Css” as the name, with a capital C exactly as in Css. (For an explanation see Chapter 29, Opening
Files from Command-Line - org.csstudio.openfile).

Select the application ID defined in the previous step. Press the “New...” button next to the “Product
Definition” section to create a new product ID, and in there again select your application ID.

Site-Specific Products

86

Next you need to select if your product configuration is based on plugins or features, and then list either
plugin or features in the “Dependencies” tab. Initially it is easier to base a product on plugins. You can list
the application plugins that you want to include in your product, for example Probe and BOY. You then
press the “Add Required Plug-ins” button, and you are done.

This approach has the disadvantage that your product consists of a long list of plugins. After the fact it
will be hard to determine which plugins you wanted to include in your product to provide the user with
some functionality, and which plugins had to be added because they were dependencies of those functional
plugins. Also remember that you might need plugins that do not show up as direct dependencies.

In the long run your product will be easier to maintain if it is based on features. You define one feature to
list the application plugins that you want for your users, and separate features to list the plugins that result
from dependencies, maybe further separated into CSS core plugins and those from Eclipse. The following
describes how to create those features.

Create applications Feature
Create a new “Feature” project called org.csstudio.mysite.applications.feature. This
feature lists all the application plugins that you want to include into your product, for example the plugins
for Probe, Data Browser, BOY. Maybe just Probe as you get started.

Start by adding your product plugin, then add the application plugins. Some application plugins are already
pre-aggregated into features, for example org.csstudio.opibuilder.feature. You can add
individual plugins or make your applications feature include other features.

Add the applications feature as a dependency to your *.product.

Create core Feature
Similar to the eclipse feature, create a feature called org.csstudio.mysite.core.feature
and add it as a dependency to your product. This feature will list all “core” CSS plugins that your
application plugins need. By separating these supporting plugins from the application plugins that the end
user sees, it will be easier to maintain your product in the long run.

Some plugin that you will have to add:

• org.csstudio.startup - Required by our product

• org.csstudio.utility.product - ditto

• org.csstudio.ui.menu - Define CSS menu structure

• org.csstudio.ui.help - Define CSS help structure

We will soon add more core plugins. Add the core feature as a dependency to your *.product.

Create eclipse Feature
Finally, create an eclipse feature. This feature will list all Eclipse plugins, i.e. plugins that CSS uses
but which are provided by Eclipse. It is unfortunately not very easy to determine which Eclipse plugins
you need to include in your product, and details will change between versions of Eclipse. For this reason
it is useful to list them in their own feature.

Start by adding org.eclipse.core.runtime to your eclipse feature, then add the eclipse
feature as a dependency to your *.product.

Site-Specific Products

87

Fix Dependencies
When a product is based on features, some manual labor will be required to add direct plugin dependencies
to the core respectively eclipse features.

This will be painful. If you base your product on plugins, Eclipse can add all required plugins via a simple
click of a button. But when you base your product on features, Eclipse cannot tell to which of the features
the missing plugins should be added. You will have to do this. Still, in the long run your product should
be easier to maintain if it is based on features, so hang in there.

Start by trying to run the new product from within the IDE: Open the *.product file, press
“Synchronize” and then “Launch an Eclipse Application”. Your product will not start. Instead, you will
see many error messages, including “The application could not start. Would you like to view the log?”.
You can select to see the errors in the Error log view, which is typically more convenient, or you
can read the plain log file that looks like this:

!MESSAGE Bundle .../org.csstudio.ui.help/ was not resolved.
!MESSAGE Missing required bundle org.eclipse.help.ui_0.0.0

This means that the plugin org.eclipse.help.ui is a missing direct dependency of your product.
Add all missing plugins with names starting in org.csstudio into your core feature, and add the missing
Eclipse plugins into your eclipse feature.

For some missing dependencies you will find that they are available in system-specific
variants. One example is file system access. Your product might require a plugin
org.eclipse.core.filesystem. When you add it to your eclipse feature, you will notice
that there are similarly named plugins org.eclipse.core.filesystem.win32.x86 and
org.eclipse.core.filesystem.macosx because details of file systems differ between
operating systems.

You should go ahead and add all variants, because eventually you want to build your product for multiple
architectures. When doing this, however, you should configure the feature to only include those plugins
on the appropriate target architecture. In the feature editor, you can enter the operating systems and
architecture for each plugin. In the generated feature.xml file, it should look like this:

<plugin
 id="org.eclipse.core.filesystem.win32.x86"
 os="win32"
 arch="x86"
 ...

This way your product will include the Windows-specific file system support for x86 architectures, but
only when your product is actually compiled for that target architecture.

Figure 16.2. Plug-in Dependency Validator

Another display of missing plugin dependencies is available from the menu “Run”, “Run
Configurations...”. Locate the Eclipse Application entry for your product, select the “Plug-ins” tab

Site-Specific Products

88

and press the “Validate Plug-Ins” button. It will open a display of missing dependencies as shown in
Figure 16.2, “Plug-in Dependency Validator”.

Continue to add missing dependencies to your features, occasionally pressing “Synchronize” and then
“Launch an Eclipse Application” in your product to see which dependencies are still required.

Eventually, your product should run.

Congratulations! You just managed to overcome the most difficult part of getting started with a site-specific
setup of CSS.

When you now add more plugins to your product, it is usually much easier to identify the required plugins
because they will be direct dependencies of the added plugins. After a change in the Eclipse version,
modifications to your product will mostly be limited to the eclipse feature.

Memory Settings
Java code always runs within a limited memory environment. The JVM emposes an upper limit on the
amount of memory that it requests from the operating system. This means that a Java program is very
unlikely to exhaust all the computer's memory and have a negative impact on other applications running
on the same machine. On the other hand, if your product contains enough plugins or is used in a way that
requires a lot of memory, your log file (see Section 5.2, “Log File”) can indicate out-of-memory errors
because the JVM hit its self-imposed limit. Portions of CSS will stop functioning as expected: Display
stops updating, new windows fail to open. The CSS product for your site should therefore be configured to
allow for sufficient memory for its expected use, while at the same time not consuming all the computer's
memory.

For Eclipse RCP products, these limits can be configured in the product file:

1. Open the *.product file
2. In the product configuration editor, select the “Launching” tab.
3. Enter JVM memory settings in the “VM Arguments” field.

The following will allow the JVM to fetch up to 1GB of dynamic memory and 128MB of code space:

-Xmx1024m
-XX:MaxPermSize=128M

The settings it the *.product file take effect the next time you build the product binary. If you run the
product within the IDE during development and testing, you need to update the memory settings in the run
configuration of the product. To adjust the settings of an existing product binary, you can add or edit the
same commands in the *.ini of the product. The ini file has the same name as the application launcher,
but with “.ini” as an extension. For Mac OS X, is is located in the *.app/Contents/MacOS folder
of the product binary.

Unfortunately, it is hard to predict the best memory setting. You will have to try your product for a while
in common use cases to determine how much memory you should allow.

89

Chapter 17. Product Intro Pages
17.1. “Welcome” Pages

Eclipse provides introduction pages that are accessible via the menu Help, Welcome. They are also
displayed to the user when CSS is started for the very first time.

17.2. Universal Intro
Fundamentally, an RCP product can provide arbitrary introduction page content via the
org.eclipse.ui.intro extension point. Refer to the online help for details.

CSS products, however, should use the “Universal Intro” mechanism. Instead of defining the complete
introduction page content within your product, it allows other CSS plugins to also contribute intro page
content. There is no need to update a custom, product-specific intro when adding or changing plugins.

To enable the Universal Intro, configure the intro extension point as follows for your product, using the
correct productId of your product:

<extension point="org.eclipse.ui.intro">
 <introProductBinding
 introId="org.eclipse.ui.intro.universal"
 productId="org.csstudio.....your-product.....product"/>
</extension>

Your product's plugin.xml file should already contain an entry for the
org.eclipse.core.runtime.products extension point. You need to add the following elements
to configure the main page of the universal intro:

<extension point="org.eclipse.core.runtime.products">
 id="product"
 <product application="...." name="...">
 <property name="aboutImage" value="..."/>
 <!-- Append intro properties: -->
 <property name="introBrandingImageText"
 value="My Version of CSS"/>
 <property name="introBrandingImage"
 value="product:icons/css64.png"/>
 <property name="introTitle"
 value="Welcome to Control System Studio (CSS) for this site!">
 </property>
 </product>
</extension>

You can influence the behavior of the Universal Intro plugin to some extend via preference settings added
to your product's plugin_customization.ini file, for example like this:

Select sections of intro page
org.eclipse.ui.intro.universal/INTRO_ROOT_PAGES=overview,\
 firststeps,whatsnew

Select scheme
org.eclipse.ui.intro/INTRO_THEME=org.eclipse.ui.intro.universal.slate

Product Intro Pages

90

Configure placement of sections
org.eclipse.ui.intro.universal/INTRO_DATA=product:intro_data.xml

The intro_data.xml file mentioned in these settings can look like this:

<?xml version="1.0" encoding="utf-8" ?>
<!-- This file controls the initial placement of
 Welcome (intro) page items.
 File can be generated via the Welcome page preference panel.

 Items that are not listed in here will show in a
 default place on their page.
 Items listen in <hidden></hidden> sections will be, well,
 hidden.
 -->
<extensions>
 <page id="overview">
 <group path="page-content/top-left">
 <extension id="org.csstudio.myproduct.product.overview"
 importance="high"/>
 </group>
 </page>
 <page id="whatsnew">
 <group path="page-content/top-left">
 <extension id="org.csstudio.sns.product.whatsnew"
 importance="high"/>
 </group>
 </page>
 <page id="firststeps">
 <group path="page-content/top-left">
 <extension id="org.csstudio.trends.databrowser"
 importance="medium"/>
 </group>
 <group path="page-content/top-right">
 <extension id="org.csstudio.opibuilder" importance="medium"/>
 </group>
 </page>
</extensions>

17.3. How to Contribute
The following mark-up in your plugin.xml file adds a link to your file doc/overview.xml to the intro
pages:

<extension
 point="org.eclipse.ui.intro.configExtension">
 <configExtension
 configId="org.eclipse.ui.intro.universalConfig"
 content="doc/overview.xml">
 </configExtension>
</extension>

The IDE can help with this step: When adding a ..configExtension to your product in the plugin
editor, the "Universal Welcome Contribution" is listed as a template. It will generate an example intro file.
Consult the Eclipse online help or example files from other CSS plugin for details on the intro file format.

Product Intro Pages

91

Assuming you have a plugin org.csstudio.XXX and you want to provide intro content, there are two
options for the location of that content:

• Within the same plugin org.csstudio.XXX.
• In a separate plugin org.csstudio.XXX.intro.

Using the same plugin is the easiest option. All users of the plugin will get the intro content.
If site integrators want to disable it, they can do this via a <hidden> section in the
org.eclipse.ui.intro.universal/INTRO_DATA. It does, however, add a dependency to the
intro plugins to your plugin.

Using a separate plugin for the intoduction makes the inclusion or exclusion of the intro content more
straight forward, but adds more plugins, and is additional work. It would allow building products without
universal intro or even no intro at all. In the long run, intro content in a separate plugin is probably most
flexible. In the short run, it might be OK to add the intro to the existing plugin, then extract it to a separate
plugin as the need arises.

17.4. Where to Contribute
Technically, one can contribute to universal intro pages called overview, firststeps, tutorials,
samples, whatsnew, migrate, webresources, or even define new pages.

For CSS products it is suggested to concentrate on the following:

overview This is where each site can publish their site-specific content:

Welcome to CSS for ... users!
CSS is ...
To get started, read the 'first steps'
that introduce the various tools.
You can also read the online help, ...

firststeps This is where each tool, via a separate org.csstudio.....intro plugin, can
contribute some how-to-get-started content.

whatsnew This is were each site and each tool may add info about most recent changes, so users
who've used CSS before can read up on what changed.

17.5. Issues

Main Intro Screen
The layout of the Universal Intro main screen is mostly fixed. There isn't much to customize beyond a
one-line title and a small icon.

Cheat Sheets
In principle, it would be nice to be able to link to Cheat Sheets from for example the firststeps section
with code like this:

<!-- url is one string, broken for readability -->
<link
 url="http://org.eclipse.ui.intro/showStandby?
 partId=org.eclipse.platform.cheatsheet&
 input=org.csstudio.XXXX.some_cheat_sheet"

Product Intro Pages

92

But that requires the plugin org.eclipse.platform, which in turn adds quite some intro content
that is useful for Eclipse programmers but potentially confusing for CSS end-users.

93

Chapter 18. Update Repository
The update repository is part of the P2 provisioning system. It allows users to install additional components
into CSS. For example, the basic CSS product for your site might not include the alarm system user
interface. Interested users can add it to CSS via the menu Help, Install New Software...

Figure 18.1. Installing from an Update Site

The update mechanism further supports automated updates of already installed software to a new version,
for example by prompting users if they want to update whenever a new version becomes available.

Products that use P2 maintain their installation state. P2 tracks all the plugins and their versions that
constitute the product. The product can be updated to a newer version from an update site, and in case of
problems a product configuration can also be reverted back to a previous state.

We will briefly describe its usage, then how to create the necessary update site.

18.1. Usage
Usage of the update mechanism from the final product is relatively easy once the update site is in
place. Most of the time, users to nothing. If an update becomes available, a small notification “Updates
available. ... Click here to install” will appear the next time CSS is started. Users follow the sequence of
dialogs, finally CSS restarts with the new updates in place.

A menu entry Help, Check for Updates can be used to trigger this process while Eclipse is already
running.

Via the menu Help, Install New Software... users can install additional, optional software
from the repository.

Update Repository

94

Finally, the menu Help, About, Installation Details provides access to the history of installed
updates and allows you to revert to a previous state, i.e. to un-install software that has been added.

18.2. Create P2 Update Repository
When you export a product from the IDE as described in Section 4.13, “Product Export from IDE”, or
when you perform a headless build of a product as per Section 4.16, “Headless Build”, you can select to
not only build the product but also generate an update repository.

In the IDE export, check the option “Generate metadata repository”. Eclipse will export the product and
in addition create a directory called repository.

In the headless build, set

p2.gathering=true

in your build.properties file, and Eclipse will create a directory buildRepo.

The update repository contains files content.xml and artifacts.xml (or jar file equivalents) as
well as sub-directories with features, plugins and binaries.

By publishing this directory structure on a web server, P2-enabled products can then use the URL to that
directory for online updates.

18.3. Enabling P2 Updates in a Product
To enable an RCP product to use an update site, you need to do this:

1. Include the P2 client tools.

By including the feature

org.eclipse.equinox.p2.user.ui

in your product, you have the complete P2 GUI to support for example the menu Help, Check for
Updates and Help, Install new Software...

2. Configure for your update site.

Ideally, your product is already configured to look for updates on your update site, and maybe even
performs this automatically with little user interaction.

To include your update site in the configuration of your product, create a file p2.inf in your product
plugin. The build tools will use this to configure the product at the end of the build:

Define P2 repository, see
http://wiki.eclipse.org/Equinox/p2/Engine/Touchpoint_Instructions
http://www.ralfebert.de/blog/eclipsercp/p2_updates_tutorial/
instructions.configure=\
 addRepository(type:0,name: My Update Site,\
 location:http${#58}//www.my.site/css/updates/);\
 addRepository(type:1,name: My Update Site,\
 location:http${#58}//www.my.site/css/updates/);

If you want your product to check for updates on each startup, prompting the user if she would like to
perform the update, add this to the plugin_customization.ini of your product:

P2 Updates: Enable check on startup.

Update Repository

95

Only check, don't download
org.eclipse.equinox.p2.ui.sdk.scheduler/enabled=true
org.eclipse.equinox.p2.ui.sdk.scheduler/schedule=on-startup
org.eclipse.equinox.p2.ui.sdk.scheduler/download=false

18.4. Version Numbers
When you use online updates of our product, you need to pay attention to the version numbers of your
plugins. When you change a plugin, you need to increment its version number so that P2 can detect a new
version and support an update to that new version.

It is a good idea to use version numbers that end in .qualifier like

1.2.3.qualifier

The headless build will replace that qualifier with the current date and time, guaranteeing that the plugin
has a unique version number even if you occasionally forget to increment the version number.

The headless build default for the qualifier replacement, i.e. date and
time, can be a problem when you run a scripted build of several
products. Your products will likely share some core CSS plugins, say
org.csstudio.logging. With the default qualifier replacements, the headless build will
create binaries like org.csstudio.logging_3.0.0.v201108181010.jar,
org.csstudio.logging_3.0.0.v201108181011.jar,
org.csstudio.logging_3.0.0.v201108181012.jar, that is different versions because the
same plugin is re-built for each product with a slightly different time stamp.

A better solution might be to call your headless build with an option to defines a qualifier that only includes
the current date, not time:

java -jar .../org.eclipse.equinox.launcher_*.jar \
 -application org.eclipse.ant.core.antRunner \
 ...
 -Dqualifier=`date "+%Y%m%d"` \

In your headless build configuration file, build.properties, you then use that variable as a qualifier:

build.properties
product=...
...
forceContextQualifier=${qualifier}
...

18.5. Categories
When you review the user interface for installing additional features from a P2 repository, Figure 18.1,
“Installing from an Update Site”, note the option to “Group items by category”. By default it will be
selected, meaning that only features that are categorized will be displayed in the dialog.

When you try to use your update repository for the first time and wonder why you cannot find any of the
expected content on your update site, try if de-selecting that option will reveal your updates. If it does,
you are missing category definitions for your features.

To list your features in categories, create a file category.xml via File, New, Plug-in
Development, Category Definition and list all your features.

Update Repository

96

In the headless build configuration for your products and features, reference that category file:

build.properties
topLevelElementType=feature
topLevelElementId=org.csstudio....
...
Use absolute path or maybe path relative to the builder directory
p2.category.definition=file:${builder}/../category.xml
...

18.6. Maintaining an Update Site
Your update repository can contain all the plugins for more than one version of a product. It can even
contain the components for different products. This can be useful to allow updates of older versions of a
product to either the latest or an intermediate version. You can update from say version 1.0 to 1.1, then to
1.2, then to 1.3, revert to 1.0, then directly update to 1.3.

To create a repository that contains multiple versions, you can simply leave an existing repository
respectively buildRepo directory in place when you perform the new build. Eclipse P2 will add to the
existing repository, it will not replace it.

You might, however, prefer to have better control over the content of your repository:

What if you want to reduce the size of your repository by deleting some older versions?

What happens to the repository when a build fails?

One suggestion is to always build a new repository via the headless build. Start with an empty repository,
then copy the repository generated for a specific version into versioned subdirectories on the web server:

/path/to/web/root/css/updates/repo1.0
/path/to/web/root/css/updates/repo1.1
/path/to/web/root/css/updates/repo1.2
/path/to/web/root/css/updates/repo1.3
...

This way it is easy to delete the repository for a selected version. Next, combine those versions that you
intend to expose to users with the P2 mirror application. A script similar to this will copy or add one
repository to another:

Mirror one P2 repository to another
Mirror the metadata
java -jar $ECLIPSE/plugins/org.eclipse.equinox.launcher_*.jar \
 -application org.eclipse.equinox.p2.metadata.repository.mirrorApplication \
 -source $SOURCE -destination $DEST
Mirror the artifacts
java -jar $ECLIPSE/plugins/org.eclipse.equinox.launcher_*.jar \
 -application org.eclipse.equinox.p2.artifact.repository.mirrorApplication \
 -verbose \
 -compare \
 -source $SOURCE -destination $DEST

Given such a mirror script, you can assemble a repository as desired:

cd /path/to/web/root/css/updates
Delete old repository

Update Repository

97

rm -rf content.xml artifacts.xml binary features plugins
Include versions 1.0 and 1.3 in combined repository
mirror.sh repo1.0 .
mirror.sh repo1.3 .

98

Chapter 19. Localization
Since control system tools are used in countries with different languages, it is often a good idea to localize
the texts in CSS plugins. This way, they can be not only in English but also German, French, Chinese,
Japanese or in other languages.

19.1. Externalize Source Code Strings
When developing source code for CSS, it is a good idea to enable compiler warning for non-localized
strings, found in the Eclipse preferences under Java, Compiler, Errors/Warnings, Code style
as “Non-externalized strings (missing/unused $NON-NLS$ tag)”.

With this warning enabled, it is easy to spot non-localized texts in Java source code. For example, the texts
in the following will be marked as non-localized:

final String ID = "org.csstudio.someplug.someid";
label.setText("Hello");

To remove the warnings, there are fundamentally three options:

• Some strings like plugin IDs, host names, certain file names are not meant to be localized. The software
depends on the fixed value of these strings. You can mark them with a NON-NLS comment like this
to indicate that the text cannot be localized:

final String ID =
 "org.csstudio.someplug.someid"; //$NON-NLS-1$

The Eclipse Quick Fix in the context menu of the warning can add appropriate NON-NLS comments.
• Sometimes a whole method or class cannot be localized because all the texts in the are internal to the

application and not meant to display in a user interface. In that case, adding

@SuppressWarnings("nls")

to the method or class will suppress all localization warnings.
• Finally, if the text should indeed be localized, it is best to use the tool invoked from the menu Source,
Externalize Strings... to extract the texts into a separate Messages class. Your code will
then look like this:

label.setText(Messages.Hello);

The generated Messages class will load the text from a properties file.

19.2. Message Properties Files
The Externalize Strings... tool will create a file messages.properties that includes the
extracted test, for example:

File messages.properties
Hello=Hello

This file will be used as a default. You create translations by adding additional property files:

File messages_de.properties
Hello=Hallo

File messages_fr.properties

Localization

99

Hello=Bonjour

Special characters like the German u-umlaut need to be written in unicode as \u00fc

19.3. Test Localization in IDE
To run CSS with a different localization, you typically need to install it on a computer with an operating
system that uses that localization. For example, on a computer with the German version of Windows, CSS
will use the de localization files.

It is also possible to pass a command-line argument to the Eclipse launcher to force a specific localization.
Products launched within the IDE will typically include this as a default program argument:

-nl ${target.nl}

By changing the run configuration to use

-nl de_DE

you can run the product with German localization.

19.4. Language Codes
The locale identifier consists of a language and country. For the messages.properties file
names, it is often sufficient to only use the language code as in messages_fr.properties
for French, but in principle you could also create files messages_fr_FR.properties and
messages_fr_CA.properties with different localizations for France and Canada.

Other example language and country codes:

• en_US: English, USA

• en_CA: English, Canada

• de_DE: German, Germany

• zh_CN: Simplified Chinese, China

• ja_JP: Japanese, Japan

19.5. Externalize Texts in plugin.xml
To localize for example the labels of menu items or the title of a view, you need to localize the
corresponding text in the plugin.xml:

1. Create a file plugin.properties with content like this:

TryThis=Try this!

2. Add this option to the MANIFEST.MF which instructs Eclipse to use the properties file:

Bundle-Localization: plugin

3. Replace fixed texts in the plugin markup with references to the texts defined in the properties file using
a percent sign:

<page name="%TryThis">
...

4. Create translated files like plugin_de.properties

Localization

100

19.6. Language Caveats
It is often not sufficient to simply translate words, because the structure of sentences can be very different
in another language. For example, when a message needs to be constructed based on PV names and an
error, it is suggested to use the NLS formatting utility for this:

final String pv = .. some PV name;
final String error = .. some error info;
final String message =
 NLS.bind("There was an error {0} with PV {1}",
 error, pv);

This way, the message format can be externalized:

NLS.bind(Messages.PVErrorFmt, error, pv);

By default, the PVErrorFmt would be “There was an error {0} with PV {1}”, but it can be translated
into another language with a different sentence structure, for instance “The PV {1} produced an error.
Original error description: {0}.”

19.7. Externalize Texts in Online Help
To localize online help, the default online help subdirectory needs to be replicated into subfolders nl/de,
nl/zh and so on for the various languages. Refer to eclipse online help for details.

101

Chapter 20. Access to Data
CSS code uses “plug-able” libraries for accessing data.

20.1. Live Data
There are at this time three libraries for accessing live data:

1. DAL: This library was developed to support all data types, narrow PV-type access as well as wide
object-type access, for EPICS as well as other control system network protocols. It is used by SDS.

2. utility.pv: This smaller library was developed to support PV-type access for the data types needed
by generic control system tools. It is used by the EPICS PV Tree, PV Table, Data Browser, BOY,
(BEAUTY) Archive Engine, (BEAST) Alarm Server.

3. pvmanager: This new API supports PV-type access but also handles aggregation and threading.

All libraries are fundamentally plug-able as described in the following where utility.pv is used as an
example.

The plugin org.csstudio.utility.pv defines an interface for accessing live control system data.
The archive engine for example uses that library for subscribing to value updates from PVs that you
want to archive. The utility.pv plugin does not, however, contain any implementation. Instead, it defines
an Eclipse Extension Point that allows other plugins to provide pluggable implementations. The plugin
org.csstudio.utility.pv.epics implements live data access based on EPICS Channel Access
Version 3. The plugin org.csstudio.utility.pv.simu implements simulated PVs like sim://
ramp. This way, one can build an archive engine that supports EPICS, or EPICS and simulated PVs, or
only simulated PVs by simply including the desired plugins. There is no need to change the actual archive
engine code at all.

While this modular approach is very flexible, there can be one disadvantage: The archive engine code
for example only depends on org.csstudio.utility.pv, the definition of the API for accessing
live data. When bundling the archive engine code into a product, this plugin must be included. The
implementing plugins like org.csstudio.utility.pv.epics are optional, allowing you to build
an archive engine that does not interface to EPICS but another network protocol of your choice. If you
fail to include any implementing plugins, the product will built without errors but later issue runtime error
messages

No extensions to org.csstudio.utility.pv.pvfactory found

This error means: The org.csstudio.utility.pv could not locate any implementation, no
“factory” classes for creating actual live data PVs. You need to include at least one implementing plugin
like org.csstudio.utility.pv.epics or org.csstudio.utility.pv.simu.

102

Chapter 21. Data Exchange within CSS
Maybe the biggest difference between arbitrary RCP plugins and CSS code is the use of common data
types, allowing for exchange of these data types via context menus or drag-and-drop. This chapter explains
some of the underlying details for those who want to implement their own plugin code that links to CSS.

21.1. CSS Data Types
The plugin org.csstudio.csdata defines control system data types like ProcessVariable, a
class that holds the name of a PV. By using this data type, CSS code can distinguish PV names from
arbitrary strings.

21.2. Context Menu Contributions
Applications can define context menus. For example, when the user right-clicks on the list of traces in the
Data Browser configuration, a context menu appears that allows operations like adding a trace, removing
the selected trace etc.

One very powerful aspect of RCP is the way it allows code to contribute to context menus of other
application code. For example, the Data Browser configuration panel defines a context menu with entries
for editing the configuration of the current data browser. For those data browser traces that are based
on PVs, the context menu will include links to other CSS tools that are capable of handling PVs. The
underlying mechanism works as follows.

Use or Adapt to CSS Types
The application has to provide data in the form of common CSS data types like ProcessVariable. It
can do that by directly using these data types, but in reality the data model of an application probably needs
to store additional information, for example a PV name with color and other attributes. In that case it needs
to implement an Eclipse adapter via the extension point org.eclipse.core.runtime.adapters
from its internal model data types to CSS data types like ProcessVariable.

Allow additions to the context menu
When defining a context menu, all RCP applications are encouraged to include one item named "additions"
that can be used by other RCP plugins to extend the context menu:

MenuManager menu = my menu ...;
menu.add(new Separator(IWorkbenchActionConstants.MB_ADDITIONS));

Contributing to context menus
The plugin org.csstudio.ui.menu defines a context menu with ID
org.csstudio.ui.menu.popup.processvariable that is automatically added to all context
menus where the selection adapts to a CSS ProcessVariable. If you want your tool to appear in such
menus, you need to hook into the PV context menu with mark-up similar to the following:

<!-- Your plugin.xml -->
<extension point="org.eclipse.ui.menus">
 <menuContribution
 locationURI="popup:org.csstudio.ui.menu.popup.processvariable">

Data Exchange within CSS

103

 <command commandId="org.csstudio.my_app.OpenMyTool"
 icon="icons/my_app.gif"
 style="push">
 </command>
 </menuContribution>
</extension>

This defines a command for the PV context menu. The command is further linked to the actual
implementation (handler):

<extension point="org.eclipse.ui.commands">
 <command id="org.csstudio.my_app.OpenMyTool"
 defaultHandler="org.csstudio.my_app.OpenMyTool">
 </command>
</extension>

Handling the invocation from a context menu
Finally, you implement the handler that will be invoked from the context menu like this to receive for
example the PV names:

package org.csstudio.my_app;
public class OpenMyTool extends AbstractHandler
{
 @Override
 public Object execute(final ExecutionEvent event)
 throws ExecutionException
 {
 final ISelection selection =
 HandlerUtil.getActiveMenuSelection(event);
 final ProcessVariable[] pvs =
 AdapterUtil.convert(selection, ProcessVariable.class);
 // Open my view, display the PVs, ...

21.3. Drag-and-Drop
Eclipse provides Drag-and-Drop support for data types like text and file names. CSS adds Drag-and-
Drop support for any data type that is Serializable. The data types from Section 21.1, “CSS Data
Types” like ProcessVariable are already Serializable, so application code that uses the CSS
data types or adapts to them can easily participate in Drag-and-Drop data exchange. Drag-and-Drop is also
possible within an application via data types that are only used within that application as long as they are
Serializable. As a minimum denominator, data can be exchanged as text, which can be useful when
interfacing with non-CSS applications.

Drag Source, Drop Target
The plugin org.csstudio.ui.util offers helper classes ControlSystemDragSource and
ControlSystemDropTarget that allow “dragging” respectively “dropping” of any data type that
supports serialization:

ProcessVariable pv = new ProcessVariable("Fred");
// Assume view somehow displays the pv
TableView view = ...;
// Allow dragging the PV out of the view

Data Exchange within CSS

104

new ControlSystemDragSource(view.getControl())
{
 public Object getSelection()
 {
 return pv;
 }
};

// Other control that should allow dropping a PV
Control ctl = ...;
new ControlSystemDropTarget(ctl, ProcessVariable.class, String.class)
{
 public void handleDrop(final Object item)
 {
 if (item instanceof ProcessVariable)
 ctl.setText(((ProcessVariable) item).getName());
 else
 ctl.setText((String) item);
 }
};

Common Pitfalls
When adding Drag-and-Drop support to an application plugin, it can be helpful to enable detailed logging.
The warning “Serialization failed” because of a NotSerializableException indicates that the data
passed to the ControlSystemDragSource is not fully serializable. Maybe the class itself was marked
as implementing Serializable, but one or more member variables are using non-serializable objects.

If the “De-Serialization fails” because of a ClassNotFoundException, the reason could be that the
class used for the transfer is not visible outside the plugin that defines it. The code that performs the data
transfer is in the plugin org.csstudio.ui.util. It can only de-serialize data with known object
types. If your plugin defines a new data type MyDataType implements Serializable, you
also need to list its package name in the Export-Package section of your plugin MANIFEST.MF. In
addition, the package name of your data type must start with the plugin name, because the package name
is used to determine which plugin class loader to use to create the de-serialized data instance. Even if you
only plan to drag-and-drop data between views within one and the same plugin, all custom data types used
for those transfers must be visible to the plugin org.csstudio.ui.util.

When transferring array data types, care must be taken to provide instances of the actual data type for
the array like

new MyDataType[] { new MyDataType(), new MyDataType() }

The transfer will fail when sending an object array, even if it contains only instances of the supported
data type:

new Object[] { new MyDataType(), new MyDataType() }

When dragging the currently selected data out of a JFace Viewer, it may thus be necessary to convert
the selection before passing it to the drag source:

new ControlSystemDragSource(viewer.getControl())
{
 public Object getSelection()
 {
 final IStructuredSelection selection =

Data Exchange within CSS

105

 (IStructuredSelection) viewer.getSelection();
 final Object[] objs = selection.toArray();
 final ProcessVariable[] pvs = Arrays.copyOf(objs, objs.length,
 ProcessVariable[].class);
 return pvs;
 }
};

Part II. Plug-in Reference
The following chapters contain references regarding the API or internals of certain CS-Studio plugins. Information for
end users tends to be located in the online help, so check there as well.

107

Chapter 22. CSS Core -
org.csstudio.core.feature

CSS Core is the group of plug-ins that every CSS distribution has, regardless of product or site
requirements. This set is kept as small as possible, to avoid dependency creep-in. A plug-in is added to this
group only if, after a discussion on the mailing list, a qualified majority emerges in favor of the inclusion.

The org.csstudio.core.feature is used to maintain the list of plug-ins that belong to this group.

108

Chapter 23. CSS Core Utilities -
org.csstudio.core.util.feature

CSS Core Utilities is the group of plug-ins that are supported to be shared across different sites to provide
commons functionality among CSS applications, and constitute most of CSS core infrastructure. This
includes data definitions, connection services, common Eclipse RCP items or utilities. A plug-in can be
added to this feature if the following conditions are met:

1. there is interested from more than one site in using this plug-in
2. the maintainer takes responsibility for support to other sites

The org.csstudio.core.util.feature is used to maintain the list of plug-ins that belong to this
group, and is not mandated to be packaged and distributed in a product (though one may decide to do so).

109

Chapter 24. Logging -
org.csstudio.logging

CSS application code might need to log messages about warnings, fatal errors, but also informational
messages. The suggestion is to use java.util.logging, the logging package that is included with
Java.

24.1. Write Log Messages
To write log messages from application code, no additional CSS plugin is need. Simply invoke the logging
API like this:

// Import logger from JRE
import java.util.logging.Logger;

// Fetch Logger, for example using current class name or plugin ID.
Logger logger = Logger.getLogger(getClass().getName());

// Log a messages
logger.warning("Something terrible happened");
logger.info("FYI, I just did something");

// Can use a formatter for lazy message generation
logger.log(Level.DEBUG, "Value is {0}", value);

// ... or to include detail of an exception
catch (Exception ex)
{
 logger.log(Level.WARNNIG, "Operation failed", ex);
}

24.2. Configure the Log System
There are several ways to configure java.util.logging, for example via *.ini files in the JRE. CSS
includes a plugin org.csstudio.logging that supports logging in several ways:

• Configure logging based on Eclipse preferences. This way, you can configure logging together with
other CSS plugins, see Chapter 6, Hierarchical Preferences.

• Send log messages to the Eclipse Console View in addition to the standard output (terminal window).

• Send log messages to files, allowing rotation between several files.

• Send log messages to JMS, which allows the collection of log messages from several sources.

To use java.util.logging, your product needs to invoke

LogConfigurator.configureFromPreferences()

from within its startup code, usually just before entering the Workbench run loop. The LogConfigurator
registers a PluginLogListener to add RCP log messages to java.util.logging. Then it reads
Eclipse preferences to configure logging, allowing to log to the console, files and JMS.

Logging - org.csstudio.logging

110

For details on how the logging to the console, files and JMS can be configured, refer to the file
org.csstudio.logging/preferences.ini

A related plugin org.csstudio.logging.ui allows adjustments of the log preferences from the
preferences GUI.

24.3. Logging to other systems
There are several other logging systems for Java: Log4j, Apache Commons Logging, SLF4J, ... The point
for shared CSS code should be to not force the use of any particular external logging library into a CSS
product. Shared CSS code should be content with the java.util.logging package provided by the
standard Java library.

When creating a site-specific product, you are of course free to include for example SLF4J, and use its
“bridge” as a root logger for java.util.logging, so all CSS log messages will then be piped through SLF4J.

111

Chapter 25. Security -
org.csstudio.security

The plugins org.csstudio.security and org.csstudio.security.ui provide the API and
implementation for security as described in Chapter 13, Authentication and Authorization.

Refer to the java doc for the packages org.csstudio.security and
org.csstudio.security.ui for entry point of code that needs access to the currently authenticated
user, her autorizations, and preferences.

112

Chapter 26. CSS menus -
org.csstudio.ui.menu

The plugin “org.csstudio.ui.menu” defines through extensions the CSS Menu (which appears
in the menu bar) and the context sensitive pop-up submenu for object adaptable to
org.csstudio.csdata.ProcessVariable. The plugin “org.csstudio.ui.menu” provides
examples of how to contribute actions/commands, how to implement a view that displays the pop-up menu,
and with the same view one can test whether a popup action/commands actually displays as intended.

26.1. The CSS main menu
Figure 26.1. The CSS main menu

The overall structure of the menu is:

CSS (id: css)
 - Display (id: display)
 - Alarm (id: alarm)
 - Diagnostic (id: diag)
 - Debugging (id: debugging)
 - Configuration (id: configuration)
 - Management (id: management)
 - Editors (id: editors)
 - Utilities (id: utility)
 - Trends (id: trends)
 - Test (id: test)
 - Other (id: other)

where the each line has the name of each sub-menus and the “id” which is needed to define contributions
to those menus. Only sub-menus that have contributions are going to be displayed

The following example adds a command to the display sub-menu:

<plugin>
 ...
 <extension
 point="org.eclipse.ui.menus">
 ...
 <menuContribution
 allPopups="false"
 locationURI="menu:display">
 <command
 commandId="org.eclipse.ui.views.showView"
 icon="icons/my_icon.png"

CSS menus - org.csstudio.ui.menu

113

 label="My View"
 style="push"
 tooltip="Show My View">
 <parameter
 name="org.eclipse.ui.views.showView.viewId"
 value="org.csstudio.my_tool.MyView">
 </parameter>
 </command>
 </menuContribution>
 </extension>

This example shows the rather common case where your menu entry opens a View, using the
command org.eclipse.ui.views.showView that is provided by Eclipse. That command expects
a command parameter to provide the ID of the view to open.

You can of course also add new commands to the menus. In that case, you also need to define a handler
for your command. Refer to the Eclipse online help on commands and handlers for details.

26.2. The Process Variable popup-menu
Figure 26.2. The Process Variable popup-menu

This popup menu (id: org.csstudio.ui.menu.popup.processvariable) will appear only on
objects that are adaptable to org.csstudio.csdata.ProcessVariable. Given that the whole
menu is hidden/displayed, one only has to contribute commands without worrying about the display
condition for each command. It also makes it easier for the user to predict which entries he will find in the
menu and where they are located: if the “Process Variable” sub-menu is present, then the object is of the
right type and all the same commands are going to be available in the same order.

The following example adds a command to the popup menu:

<plugin>
 ...
 <extension
 point="org.eclipse.ui.menus">
 ...
 <menuContribution
 allPopups="false"
 locationURI="popup:org.csstudio.ui.menu.popup.processvariable">
 <command
 commandId="org.csstudio.display.waterfall.SomeCommand"
 icon="icons/water.png"
 style="push">
 </command>
 </menuContribution>
 ...

CSS menus - org.csstudio.ui.menu

114

 </extension>
 ...
</plugin>

To handle the received PV names in a command handler, see Chapter 28, Common SWT/JFace utilities
- org.csstudio.ui.util

The following example adds an action to the popup menu (note the contribution to the main section):

<plugin>
...
<extension
 point="org.eclipse.ui.popupMenus">
 ...
 <objectContribution
 adaptable="true"
 id="org.csstudio.ui.menu.test.objectContribution1"
 objectClass="org.csstudio.csdata.ProcessVariable">
 <action
 class="org.csstudio.ui.menu.test.TestPVAction"
 icon="icons/test.png"
 id="org.csstudio.ui.menu.test.testpvaction"
 label="Test Action"
 menubarPath=
 "org.csstudio.ui.menu.popup.processvariable/main">
 </action>
 </objectContribution>
 ...
</extension>
...
</plugin>

115

Chapter 27. PV Access -
org.csstudio.utility.pv

This API has been deprecated, use the PVManager instead.

This plugin provides one of the CSS APIs for accessing live control system data, i.e. read process variable
samples from front-end computers. Its emphasis is on fairly straight-forward access to individual PVs,
using a listener for received updates.

27.1. Usage
The org.csstudio.utility.pv plugin defines the API for accessing PVs, an extension point to
implement such PVs, and a PVFactory to access available implementations.

Typical usage looks like this:

// Create PV
final PV pv = PVFactory.createPV(pv_name);
// Register listener for updates
pv.addListener(new PVListener()
{
 public void pvDisconnected(PV pv)
 {
 System.out.println(pv.getName() + " is disconnected");
 }
 public void pvValueUpdate(PV pv)
 {
 IValue value = pv.getValue();
 System.out.println(pv.getName() + " = " + value);
 if (value instanceof IDoubleValue)
 {
 IDoubleValue dbl = (IDoubleValue) value;
 System.out.println(dbl.getValue());
 }
 // ... or use ValueUtil
 }
});
// Start the PV
pv.start();

...

pv.stop();

The IValue-derived data objects contain not only a basic value, i.e. number or string, but also a time
stamp, status/severity information and in most cases meta data. The meta data provides information for
display tools: value range, alarm limits, units, or strings that represent the states of enumerated PVs.

PV Access - org.csstudio.utility.pv

116

27.2. Available Implementations
The plugin org.csstudio.utility.pv defines an interface for accessing live control system data.
The archive engine for example uses that library for subscribing to value updates from PVs that you want
to archive.

The utility.pv plugin does not, however, contain any implementation. Instead, it defines an Eclipse
Extension Point that allows other plugins to provide pluggable implementations.

By including either one or all of the following plugins in a product like the archive engine, one can build
an archive engine that supports EPICS, or EPICS and simulated PVs, or only simulated PVs.

To associate PVs with an implementation, a prefix is used, for example sim://sine for a simulated PV
“sine” or ca://fred for a Channel Access PV “fred”. The utility.pv plugin has a preference setting to
specify a default prefix, which is usually set to the control system protocol. In that case, simply specifying
a PV name of fred will also select ca://fred.

EPICS Channel Access
The plugin org.csstudio.utility.pv.epics implements live data access based on EPICS
Channel Access Version 3.

Note that the Channel Access settings like the CA server address list are configured from Eclipse properties
defined in the plugin org.csstudio.platform.libs.epics.

One important setting is the choice of “pure Java” or the JNI implementation of JCA. When selecting the
former, the CAJ library will be used. CAJ is a pure Java Channel Access client implementation, usable
on all platforms, and generally offering good performance. Choose JNI if you prefer to use the original
Channel Access client library from EPICS base. The JNI client library guarantees full compatibility
with existing EPICS infrastructure, but requires a system-specific version of the JNI binary. Refer to the
README.txt in the libs.epics plugin for instructions on building this binary.

The libs.epics settings also include the subscription mode:

• VALUE - Subscribe to all value changes. Analog EPICS records can apply an MDEL update threshold.
This is the default mode for CSS.

• ARCHIVE - Subscribe to archive updates. For analog EPICS records, this uses the dedicated ADEL
update threshold. This should be used for the ArchiveEngine.

• ALARM - Subscribe to alarm state/severity changes. This should be used for the AlarmServer.

The utility.pv plugin attempts to read the DBR_CTRL_... meta data for each PV once on connection.
EPICS IOCs will fill the meta data based on certain record fields like EGU, PREC, HIHI, depending on
the record type.

The PV plugin then subscribes to the DBR_TIME_... type of the channel. This way the full meta data of
the channel is known and can be returned with each value, while the network traffic for the subscription
updates is reduced to the essential time, status and basic number or string. This procedure is quite common
for EPICS client tool, but has the disadvantage that runtime changes to the meta data will not be noticed
unless the client disconnects and then re-connects, since the full meta data is only obtained upon channel
connection.

Simulated Data
The plugin org.csstudio.utility.pv.simu implements simulated PVs like

PV Access - org.csstudio.utility.pv

117

sim://ramp

One purpose of simulated PVs is for testing CSS tools in the absense of an actual control system. In an
operational setup, “local” PVs like loc://demo can be useful to communicate via PVs inside CSS, for
example between operator interface panels inside one instance of CSS.

Refer to the online help of the plugin org.csstudio.utility.pvmanager.ui for the syntax of
simulated PVs.

27.3. Common Issues

Cannot read EPICS PVs
If you built CSS yourself from sources, assert that the EPICS plugins are included.
Under Help, About..., Installation Details, Plug-Ins check that the plugins
org.csstudio.utility.pv.epics and org.csstudio.platform.libs.epics are
available.

Check the EPICS CA address list. Try to access the same PV with the EPICS caget command-line tool.
Compare the EPICS_CA_ADDR_LIST environment variable used by the command-line tool with the
CSS preference for the address list.

Try both the CAJ and JNI version of CA.

CA Repeater
Channel Access uses a caRepeater to monitor beacons from CA servers. If you run CSS without a CA
repeater, you might see error messages

failed to start executable - "caRepeater" Cannot find the file

This error means: You have not started a CA repeater on the computer where you run CSS. In practice,
CSS will work just fine most of the time. In case of network errors or IOC reboots, however, it might
not re-connect to some PVs after the network or IOC problem should have been resolved until you re-
open the affected tools.

In an operational control room setup, you should assert that all computers launch an instance of the EPICS
caRepeater on bootup.

No Implementations in Product
While the modular plug-in approach is very flexible, there can be one disadvantage: The archive engine
code for example only depends on org.csstudio.utility.pv, the definition of the API for
accessing live data. When bundling the archive engine code into a product, this plugin must be included.

The implementing plugins like org.csstudio.utility.pv.epics are optional, allowing you to
build an archive engine that does not interface to EPICS but another network protocol of your choice. If
you fail to include any implementing plugins, the product will built without errors but later issue runtime
error messages

No extensions to org.csstudio.utility.pv.pvfactory found

This error means: The org.csstudio.utility.pv could not locate any implementation, no factory
classes for creating actual live data PVs. You need to include at least one implementing plugin like
org.csstudio.utility.pv.epics or org.csstudio.utility.pv.simu.

118

Chapter 28. Common SWT/JFace
utilities - org.csstudio.ui.util

The plugin “org.csstudio.ui.util” defines common ui elements can be used in different applications.

28.1. Adapter utilities -
org.csstudio.ui.util.AdapterUtil

The most important way for Eclipse RCP plug-ins to communicate is throught the use of Adapters.
Unfortunately Adapters do not work well with conversions from one object to arrays of an object of
different kind, so we created a few utility methods to properly handle this case. These should be used
when adapting the selection from one plug-in to the other during events like drag'n'drog and context menu
command/actions.

For example, this command handler convert a selection to a specific type:

public class MyCommandHandler extends AbstractHandler
{
 @Override
 public Object execute(ExecutionEvent event)
 throws ExecutionException
 {
 ISelection selection =
 HandlerUtil.getActiveMenuSelection(event);
 ProcessVariable[] pvs =
 AdapterUtil.convert(selection, ProcessVariable.class);
 ...
}

If no selection is available, or no conversion is available, and empty array is returned. If each item in the
selection is adaptable to a PV[], those arrays will be merged into a single array.

28.2. Drag and drop - org.csstudio.ui.util.dnd
This supports easier implementation for drag sources and drop targets.

To declare a source:

 Control control = ...

 // Drag PVs out of control
 new ControlSystemDragSource(control) {
 @Override
 public Object getSelection() {
 return pvs;
 }
 };

The source will take care of broadcasting the selection in all possible adaptable types.

Common SWT/JFace
utilities - org.csstudio.ui.util

119

To accept a drop:

 Control control = ...

 // Accept PVs for a drop
 new ControlSystemDropTarget(control,
 MyData.class,
 ProcessVariable[].class) {
 @Override
 public void handleDrop(Object item) {
 if (item instanceof ProcessVariable[]) {
 control.setText(
 Arrays.toString((ProcessVariable[]) item));
 }
 if (item instanceof MyData) {
 control.setText(((MyData) item).getText());
 }
 }
 };

The target will take care of requesting the type request, in the order of preference given in the constructor.

120

Chapter 29. Opening Files from
Command-Line - org.csstudio.openfile

29.1. Goal
While it is quite easy to open display or other CSS configuration files inside CSS, i.e. when CSS is already
running, there is often also the need to open such files from outside of CSS. This is especially important
for sites that are transitioning to CSS. If legacy control system tools can somehow open CSS displays from
the command line, i.e. also from within shell scripts, the transition can be much smoother.

29.2. Eclipse Launcher
The Eclipse Launcher supports a command-line option

--launcher.openFile some_file_name.ext

When this option is found, the launcher will send the SWT.OpenDocuments event to the RCP
application. The launcher will also check for another copy of the RCP application. If it detects that another
copy of the RCP application is already running, it will send the event to that application.

Fundamentally, this accomplishes the goal: CSS can receive the names of files that it should open from
the command line. Duplicate instances of CSS are automatically prevented.

29.3. Product Name
To benefit from this Eclipse feature, several steps are necessary.

The launcher needs to detect another instance of CSS that might already be running, and it has to be able
to do this on all supported operating systems. Eclipse depends on the following correlation between the
product name and the launcher name:

• The launcher name has to be a lower-case name like css. You configure the launcher name in the
“Launching” tab of the editor for your *.product file. On Windows, the resulting launcher is actually
called css.exe.

• The application name must match the launcher name with the first letter capitalized, i.e. “Css”. You
specify the application name on the “Overview” tab of the editor for your *.product file, in the
“General Information” section. After pressing the “Synchronize” link on the Overview tab of the product
editor, you should find the same application name in the product's plugin.xml file like this:

<extension id="product"
 point="org.eclipse.core.runtime.products">
 <product
 application="org.csstudio.your-site.product.application"
 name="Css">
 <property name="appName" value="Css">
 </property>
 ...

The key here is that the appName matches the name of your launcher with the first letter capitalized.

Opening Files from Command-
Line - org.csstudio.openfile

121

29.4. Handle SWT.OpenDocuments
Your CSS application needs to handle the received SWT.OpenDocuments events. When
you use the Workbench class from the plugin org.csstudio.utility.product, its
ApplicationWorkbenchAdvisor will attempt to open all received files. To accomplish this, it relies
on the DisplayUtil from the org.csstudio.openfile plugin.

29.5. Associate File Types with Handlers
The org.csstudio.openfile plugin declares an extension point
org.csstudio.openfile.openDisplay that other plugins can implement to support opening
their files from the command-line.

One example is BOY, which will open *.opi files in the BOY runtime.

One might think that the existing Eclipse registry entries for editors are sufficient to associate file types
with a handler that can open them. The editor registry, however, allows for the registration of multiple
editors. When using that to open files from the command line, it would be hard to predict if for example
an *.opi file was opened in the desired BOY runtime, or in the BOY editor, a generic XML file editor
or a plain text file editor. The designated ...openDisplay extension point avoids such ambiguities.

29.6. Default Command-Line Action
As described so far, a CSS product can open files from the command line when called like this:

css --launcher.openFile some_file.opi

When adding the following to the *.ini file of your product, simply listing the file name is sufficient:

--launcher.defaultAction
openFile

Note that this is the *.ini file of the product, not the configuration/config.ini. If the product
is called css, that file is in the same directory as the launcher and called css.ini. Instead of manually
editing the file, add the --launcher.defaultAction openFile in the *.product file under
“Launching Arguments”, “Program Arguments”.

For one, this can be more convenient. In addition, this is necessary to support opening files on windows
when you double click a file that is associated with CSS, or you select files and choose “Open With”
or “Sent To” CSS, because that mechanism will invoke CSS with just the file names, lacking the --
launcher.openFile option.

122

Chapter 30. Logbook Support -
org.csstudio.logbook

Many sites have an electronic logbook, i.e. an online system that keeps entries with texts or images. CSS
itself does not include an electronic logbook, but it can be linked to an existing site-specific system.

If a logbook is available at your site, several CSS tools will allow users to send text or screenshots to it. The
Data Browser and BOY for example allow sending a screenshot to the logbook, while the alarm system
tools can send a description of currently active alarms to the logbook. This can be done directly from for
example the context menu of a BOY display, without need to start an external tool to create a screenshot,
saving it to a file, then logging into the logbook to download the saved file etc.

30.1. org.csstudio.logbook
This plugin defines the API for making logbook entries as well as an extension point for the actual
implementation.

Code that allows logbook entry generation depends on this plugin and can query it for the presence of an
implementation. If no implementation of the logbook extension point is available, the logbook functionality
should simply be disabled, for example by hiding corresponding menu entries.

30.2. org.csstudio.logbook.ui
This plugin provides a view for making simple text-based logbook entries.

30.3. org.csstudio.logbook.sns, ...
Site-specific plugins provide the implementation for creating a logbook entry. There must be at most one
such implementation. With no implementation available, the logbook functionality is simply disabled.
When multiple implementations are available, the logbook support will report an error.

123

Chapter 31. Message History Browser -
org.cstudio.alarm.beast.msghist

The plugin org.cstudio.alarm.beast.msghist is a generic browser for the message history. It
displays JMS messages that were written to the relational database by for example the tool described in
Chapter 35, RDB Logging - org.cstudio.logging.jms2rdb.

Figure 31.1. Message History Browser

By default, the tool displays all messages that were written in the last hour. You can adjust the time range
via the “Times” button or by directly entering a start and end time, using for example a start of -1 days
as shown in the above figure.

The “Filter” button allows you to restrict the message list to for example only log messages, i.e. messages
with TYPE equal to log, and you can further limit the result to messages originating from a specific HOST.

The context menu of the message table allows displaying the detail of a message, i.e. it can show all
properties of a message. From the context menu you can also export all messages from the table into a file.

Note that there can be many messages, each having many properties. Displaying too many messages
would exhaust the available computer memory. By default, the tool restricts itself to only fetching 100000
properties. With the average log message containing 9 properties, this equals roughly 11000 messages.
You can adjust this limit in the preference settings of the message history browser.

124

Chapter 32. Archive Tools -
org.csstudio.archive.engine and
related

The Archive Engine uses plugins to allow customization. It was developed based on the idea of using a
relational database (MySQL, Oracle, PostgreSQL, ...) for storing both the sample engine configuration
and the archived data. By replacing for example the plugin that implements the “write” support, one can
store samples in a modified RDB table format or even a totally different storage medium. See Chapter 11,
Archive System for setup and usage of the archive tools.

32.1. org.csstudio.archive.engine
This plugin contains the archive sample engine code. This includes the code that connects to PVs, samples
them by various means, as well as a web server to provide access to status information. To obtain the
sample engine configuration and to write samples to the actual storage, it uses interfaces from plugins
described in the following sections.

The engine plugin also includes an ArchiveEngine.product file that is used to build the executable.
This product file selects specific implementing plugins, for example to create an RDB-based archive
engine. Sites that plan to build the archive engine for a different configuration or sample storage
implementation will need to create a different product file.

32.2. org.csstudio.archive.config
This plugin defines the API and extension point for reading an archive engine configuration. It provides
access to the list of groups, channels, and the sample configuration of each channel. The archive engine
uses this API to determine which channels it should archive and how.

32.3. org.csstudio.archive.config.rdb
This plugin implements the configuration API for an RDB, meaning it reads an archive configuration from
MySQL, Oracle or PostgreSQL. It also provides ArchiveConfigTool.product, a command-line
application that can be used to export a sample configuration into an XML file and (re-)import an archive
engine configuration from such an XML file.

By replacing this plugin with a site-specific variant, one could for example store the archive engine
configuration in a different table format or even an entirely different system like LDAP.

32.4. org.csstudio.archive.writer
This plugin defines the API and extension point for writing archive samples to a data store. The archive
engine uses this API to write samples to the archive.

32.5. org.csstudio.archive.writer.rdb
This plugin implements the sample writer API for an RDB, meaning it allows the archive engine to write
samples to MySQL, Oracle or PostgreSQL.

Archive Tools -
org.csstudio.archive.engine

and related

125

By replacing this plugin with a site-specific variant, one could for example store the archive engine
configuration in a different table format or even an entirely different storage system.

32.6. org.csstudio.archive.reader
This plugin defines the API and extension point for reading archived data. It is for example used by the
Data Browser to obtain historic data for a channel.

32.7. org.csstudio.archive.reader.rdb
This plugin implements the archive reader API for the RDB table structure used by the RDB-based archive
engine. When using an archive engine that writes to a different RDB table layout or even an entirely
different storage system, you will have to implement the archive reader API for that system.

32.8. org.csstudio.archive.rdb
This plugin defines the RDB table structure that is used by the
org.csstudio.archive.config.rdb, org.csstudio.archive.writer.rdb and
org.csstudio.archivereader.rdb plugins. It also defines the fundamental RDB connection
preferences for those plugins, i.e. the RDB URL, user name and password.

126

Chapter 33. JMS Monitor -
org.csstudio.debugging.jmsmonitor

The JMS Monitor is a utility for monitoring raw JMS messages. It is a debug tool for developers.

Figure 33.1. JMS Message Monitor

Under its preferences, configure the appropriate JMS connection URL, see Chapter 12, Java Message
Server.

After entering a JMS Topic like LOG, ALARM, TALK etc., it will display received messages. It is possible
to enter a list of comma-separated topics.

For more, refer to its online help.

127

Chapter 34. Application Launcher -
org.csstudio.navigator.applaunch

This plugin supports Application Launch configuration files which can then be started from the Eclipse
Navigator.

Figure 34.1. Application Launch files

Most accelerator sites have some type of application launcher that lists the many specialized tools that
operators or experimenters can start. Users of several subsystem groups can create their own section of the
launch configuration. Some tools are listed more than once as shown for the Terminal tool in Figure 34.1,
“Application Launch files” because several groups would like to list it in “their” section of the launcher.

This plugin allows using the Eclipse Navigator view as such a launcher. The navigator already displays
all workspace files, and can for example open the operator display editor or runtime for display files. It is
thus a basic launcher where users can arrange the files in projects and sub-directories and then launch the
associated CSS tools. Using linked folders, one can create shared as well as user-specific arrangements.

The use of the Navigator as a launcher complements the CSS menu bar: The menu bar has a comparable
limited size and fixed arrangement. It lists the tools built into CSS that many users need. Each CSS tool
typically shows only once in the menu bar.

A launcher configuration can be much bigger, listing many external tools. Some entries like the launcher
for a terminal window can appear in multiple sub-directories of the launch configuration because each
subsystem group of users can create their own section of the launch configuration.

Application Launcher -
org.csstudio.navigator.applaunch

128

34.1. Basic Usage
End users simply double-click a launch configuration file in the Navigator. Similar to the way double-
clicking a display file opens the operator interface tool, opening a launch configuration file will start the
associated external application.

Eclipse remembers the last action on a file. If the user had previously edited a launch configuration, i.e.
opened it in an editor instead of executing it, Eclipse will remember this and again open the editor on
the next double-click. In this case once right-click the launch configuration file and select Open With,
then Launch Application to execute it. From now on the double-click will also default to launching
the application.

Users can create new subsections of the launcher by creating new file folders in the Navigator:

• Right-click on the parent folder

• Select New, Other.., section General, type Folder

• Enter name of new folder

Since launch configuration files are still files, they can be moved, copied, renamed like any other file in
the Navigator.

34.2. Creating a new Application Launcher
Configuration File

• Right-click on the parent folder

• Select New, Other.., section Launcher, Application Launch Configuration

• Enter a file name, for example Terminal. The file extension .app will be added automatically, so
the resulting launch configuration file would be Terminal.app

• On the next page of the Launch Configuration editor, enter the command to launch, for example xterm
or cmd.exe. You may also select an icon.

• Press Finish.

• Execute the launch configuration via right-click on the file, selecting Open With, then
Application Launcher. From now on the double-click will also default to launching the
application.

34.3. Examples for commands to launch
The command to launch can be anything that is also executable from a shell or command prompt. One
example is starting a shell window for entering such commands.

On Windows, this could be cmd.exe which is in the %PATH%.

On Linux, it could be xterm if on the $PATH, or better /usr/bin/X11/xterm or a similar complete
path.

On Mac OS X, one could use /Applications/Utilities/Terminal.app. Beware: Both the
Launch configuration file names and the Mac OS application directories use an extension *.app. In your
CSS workspace you can create a file Terminal.app that contains the launch configuration for the Mac
OS X terminal window application /Applications/Utilities/Terminal.app. Running that
launcher in CSS will then start the Mac OS X terminal application.

Application Launcher -
org.csstudio.navigator.applaunch

129

If you want to launch a program that requires additional command-line arguments, you can create a batch
file or shell script to invoke the program as desired and then use that batch file or shell script as the launcher
command.

On Windows or Mac OS X the command can also be the path to a file where the operating system knows
how to handle that file. For example, if double-clicking on a *.doc file will open MS Word on your
computer, you can use the full path to such *.doc files as launcher commands. When activating such a
command, the operating system will open MS Word with the document.

34.4. Editing an Application Launcher
Configuration File

To edit an existing launcher configuration file:

• Right-click on the *.app file that you want to edit
• Select Open With, then Application Editor.

Figure 34.2. Configuration Editor

The launcher configuration editor, see Figure 34.2, “Configuration Editor”, allows you to modify the
command to execute and to select a different icon.

34.5. Application Launcher Configuration File
Details

If you create launcher configuration files by other means, you need to be familiar with its XML file format.

The application launcher configuration file name must end in .app. It must be a valid XML file with an
application root element and a command:

<application>
 <command>/path/to/the/command</command>
</application>

The command should be the path to a command. On MS Windows and Mac OS X, the command may
also the path to a file that the operating system can open. For example, it could be the path to a Microsoft

Application Launcher -
org.csstudio.navigator.applaunch

130

Word document and invoking the command would then open that file in Microsoft Word on a PC or Mac
that has MS Word available.

The launcher configuration file may include an optional icon:

<application>
 <command>/path/to/the/command</command>
 <icon>icon_info</icon>
</application>

The icon info can be the following:

• icon:clipboard, icon:console, icon:edit, icon:run, icon:text, or icon:work to
select built-in icons. The default is icon:run.

• A path to an icon file within the workspace. In an operational setup one might prepare a shared
icon folder like CSS/Share/icons, and then use an icon path like CSS/Share/icons/
some_icon.gif as a launcher icon.

131

Chapter 35. RDB Logging -
org.cstudio.logging.jms2rdb

The plugin org.cstudio.logging.jms2rdb is a tool that listens to JMS messages from the log,
alarm system or other CSS applications and sends them to the RDB.

This tool uses an RDB schema for messages that extends the basic schema described in Section 12.5,
“JMS logging to RDB” by adding the following commonly used message properties to the MESSAGE
table itself:

• TYPE: The message type, for example “log” or “alarm”.
• SEVERITY: The severity of the message, for example “ERROR” or “MINOR”.
• NAME: A name associated with the message. For “log” messages, this is typically the name of the Java

method that logged the information. For “alarm” messages, this is the name of the Process Variable
that triggered the alarm.

35.1. Relational Database Setup
The dbd sub-directory of the plugin sources describes the RDB schema for MySQL, Oracle and
PostgreSQL.

35.2. Building the Tool
Use the JMS2RDB.product file to generate the binary.

35.3. Running the Tool
You configure the connection parameters for JMS and your RDB via a plugin customization file as
described in Chapter 6, Hierarchical Preferences. Refer to the file plugin_customization.ini
included in the JMS2RDB plugin sources for an example.

Once running, the JMS2RDB tool provides a web browser interface as a basic status monitor under the
URL

http://localhost:4913/main

The port number can be adjusted in the preference settings of the tool. To connect from another computer,
replace localhost with the name of the host that is executing the tool.

Figure 35.1. JMS-2-RDB Web Interface

RDB Logging -
org.cstudio.logging.jms2rdb

132

The main web page will look similar to Figure 35.1, “JMS-2-RDB Web Interface”, displaying the last
message that was received and written to the RDB. In case of errors, an addition “Last Error” section will
display for example the last database access error.

To stop the tool, access the URL

http://localhost:4913/stop

133

Chapter 36. Web menu -
org.csstudio.ui.menu.web

The plugin “org.csstudio.ui.menu.web” adds a Web entry to the CSS menu which allows users to access
web sites related to the control system.

As a growing number of control system related tools become web-based, this allows easy access to them
from within CSS.

Figure 36.1. Web menu

Depending on the operating system and the preference settings under General, Web Browser, the
web pages will open in a web browser within the CSS workbench or in an external web browser.

36.1. Configuration
The web links are configured by the CSS maintainer for each site via preferences of the
“org.csstudio.ui.menu.web” plugin.

The example web menu from Figure 36.1, “Web menu” was created with the following configuration
placed in the plugin_customization.ini of the product:

Selects the web links to show and define their order.
When left blank, there won't be any web links.
org.csstudio.ui.menu.web/weblinks=local css google

Define the Label and link for each web link.
Only those listed in ...weblinks above are actually used!

Web menu - org.csstudio.ui.menu.web

134

Link to the local CSS web site where users can download CSS,
learn about updates etc:
org.csstudio.ui.menu.web/local=\
Local CSS Web Site|http://www.my-institute.edu/css/

The main CSS web page on GitHub
org.csstudio.ui.menu.web/css=\
CSS Wiki|https://github.com/ControlSystemStudio/cs-studio/wiki

Example for other useful links
org.csstudio.ui.menu.web/google=Google|http://www.google.com

135

Chapter 37. Chat -
org.csstudio.utility.chat

The Chat tool is a basic online group chat client for CSS. The emphasis is on use in a control room context:

• Easily log onto control room chat group.
• Simply exchange screen-shots and files.

Technically, it is an XMPP chat protocol client that can communicate with other clients that support the
same protocol (Pidgin, Google chat, Mac OS iChat, ...).

Figure 37.1. Chat Client (left) communicating with “Pidgin” (right)

37.1. Basic Usage
Start the chat client from the menu CSS, Utilities, Group Chat.

The suggested user name that is initially displayed in the Name: field of the chat tool is the name of the
user logged onto the computer suffixed by the network name of the computer. The default password will
be a dollar sign followed by the user name, and the tool will attempt to create an account for that user
and password on the chat server. The idea is that most users can simply press the “Return” respectively
“Enter” key in the user name field to log on with the suggested user name and password. Advanced users
may enter a user name and password that was registered with the chat server by other means.

Once connected to the group chat, you can see other participants who are connected to the chat in the
Participants list. Enter text to send in the Send: field, completing lines to send with the “Return”
key.

37.2. Sending Files
By right-clicking on one of the entries in the Participants list you can access a context menu that
allows you to “Contact” another chat participant. A separate chat panel will open for communicating with
only that user, outside of the group chat. Note that the other participant will be asked if she accepts the
invitation to an individual chat, and may decline.

37.3. Individual Chats
By right-clicking on one of the entries in the Participants list you can access a context menu with
options “Send File” and “Send Screenshot”. When selecting to send a screen-shot, an image of your current

Chat - org.csstudio.utility.chat

136

desktop will be sent to the receiver. When sending a file, you will be prompted for the name of the file
that you want to send. Note that in either case the receiving participant of the chat will be asked if she
accepts the file that you sent, and may decline.

37.4. XMPP Server Setup - Openfire
XMPP is an open technology for real-time communication. More information can be found at http://
xmpp.org, including lists of XMPP server implementations and other chat clients compatible with XMPP.

Openfire, available from http://www.igniterealtime.org/projects/openfire, is an open source, Java-based
XMPP server for Windows, Linux and Mac OS X. For Windows, it includes an executable bin/
openfire.exe to start and stop the server and to access its web interface via a “Launch Admin” button.

When starting Openfire for the first time, you need to configure the following via its web interface:

• Domain - Set to either localhost for initial tests on one computer, or set to the complete and correct
host name.

• Database - Selecting the “embedded” database seems to work fine.

• Administrator account - Use for example “admin@localhost” and a password of your choice.

From now on, to log into the admin web interface of Openfire, you have to use just “admin” and the
password that you configured, not “admin@localhost”!

In the Openfire online admin interface you should check the setting under “Server”, “Server Settings”,
“Registration & Login”. By default, users should be allowed to automatically create new accounts. The
CSS chat client will use this option to attempt automatic account creation with the suggested user name
and password as described in Section 37.1, “Basic Usage”. If you choose to disable automated account
creation, you need to create user accounts in the Openfire admin interface.

The CSS chat client expects to connect to a chat room called “css”. From the Openfire online admin
interface, select the “Group Chat” tab. Press “Create New Room”:

• Enter css as the room ID.

• You will also need to enter a room name, description and topic, which you can all set to “CSS”.

• Under Show Real JIDs of Occupants to:, select “Anyone”. This will allow the chat clients
to directly contact chat group participants for individual chats and file exchange.

• Before you save the room settings, take note of the full name of the group chat. It should use the chat
room ID followed by @conference and the host name of the server, similar to

css@conference.localhost

To reset the Openfire configuration, for example after forgetting the admin password, stop openfire. In the
file conf/openfire.xml, locate the setup entry. Set it to false, start Openfire again and when
you now access the admin web interface, you can configure a new admin password.

37.5. Chat Client Settings
The CSS chat clients has the following preference settings:

• chat_server - Host name that runs the chat server, for example “localhost”.

• group - Name of the chat group to join, for example “css@conference.localhost”.

http://xmpp.org
http://xmpp.org
http://www.igniterealtime.org/projects/openfire

Chat - org.csstudio.utility.chat

137

37.6. Example using Pidgin
Pidgin, available from http://pidgin.im, is an open-source chat client for various operating systems that
can be used to test an XMPP server setup.

To configure Pidgin for a connection with Openfire, use the Pidgin menu bar to create an account with
the following settings:

• Procotol - XMPP
• Username, password - Either enter a name and password that has already been added to Openfire, or

enter a new name and password with the option to “Create this new account on server”.
• Domain - Enter name of XMPP server host, for example “localhost”.

In the “Advanced” account setup panel, check that the XMPP connect port is set to 5222 and the file
transfer proxies is set to the host name of your XMPP server port 7777, for example localhost:7777.

http://pidgin.im

138

Appendix A. Docbook
This document is written in DocBook. The Docbook XML format offers a single-source platform for
generating HTML, PDF and other outputs. The generated HTML is very minimal, much less verbose than
for example the HTML generated by word processors.

There are many online resources for the DocBook syntax, for example http://www.docbook.org/tdg5/en/
html/docbook.html. While these nicely describe the syntax, I had a hard time finding a concise description
of a tool set for translating DocBook into HTML or PDF. The following seems to work on Linux and OS X.

A.1. Example Document
This is an example document:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://docbook.org/ns/docbook" version="5.0">
 <title>Very simple book</title>
 <chapter>
 <title>Hello</title>
 <para>Hello world!</para>
 </chapter>
</book>

Most real-world documents would actually be split across files, for example a example.xml:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://docbook.org/ns/docbook" version="5.0"
 xmlns:xi="http://www.w3.org/2001/XInclude">
 <title>Very simple book</title>
 <xi:include href="chapter.xml" />
</book>

.. which includes a chapter.xml using XInclude:

<?xml version="1.0" encoding="UTF-8"?>
<chapter xmlns="http://docbook.org/ns/docbook" version="5.0">
 <title>Hello</title>
 <para>Hello world!</para>
</chapter>

A.2. Style Sheets, Processor
XSL translations are used to convert the DocBook XML into other formats. The necessary set of
style sheets, for example the version docbook-xsl-1.76.1, can be downloaded from http://
sourceforge.net/projects/docbook/files.

In addition to the style sheets, a processing tool that can apply XSL translations to XML documents is
required. Linux and Mac OS X already include such a tool, namely xsltproc. For Windows, you need
to find such a tool.

A.3. Generate HTML
HTML is generated by simply applying the appropriate translation:

http://www.docbook.org/tdg5/en/html/docbook.html
http://www.docbook.org/tdg5/en/html/docbook.html
http://sourceforge.net/projects/docbook/files
http://sourceforge.net/projects/docbook/files

Docbook

139

xsltproc /path/to/docbook-xsl-1.76.1/html/docbook.xsl \
 example.xml >example.html

A.4. Generate PDF
Fundamentally, PDF is created by first translating the DocBook XML into an intermediate format like
LaTeX, then using LaTeX to generate PDF. A very convenient intermediate format is XSL-FO because the
free, open source Apache Java FOP tool can perform the transformation to FO and render the result as PDF.

After downloading and installing Apache FOP, use a command like this:

fop -xsl /path/to/docbook-xsl-1.76.1/html/docbook.xsl \
 -xml example.xml -pdf example.pdf

A.5. Options
Both xsltproc and fop support processing options that influence the generated output:

html.stylesheet Set to the name of a Cascading Style Sheet. Only applies to HTML output.
generate.toc Set to 0 to disable table of contents.
generate.index Set to 0 to disable index.
chapter.autolabel Set to 0 to disable numbering of chapters.

For xsltproc, they are passed as xsltproc --stringparam parm value ... For fop, use
fop -param parm value ...

140

Index
Symbols
.metadata, 27

A
Abstract Window Toolkit (AWT), 6
Acknowledge Alarm, 64
Alarm Area Panel View, 74
AlarmServer, 65
Alarm System JMS Topics, 66
Alarm Table, 3
Alarm Table View, 73
Alarm Tree Root, 66
Alarm Tree View, 72
Alarm Trigger PV, 63
Annunciator, 74
Archive Config Tool, 45
Archive Engine, 42, 124
Authentication, 53
Authorization, 53

B
batch size, Archive Engine, 44
BEAST, 63
BEAUTY, 40
buffer reserve, Archive Engine, 44

C
CAJ, 116
caRepeater, 117
Categories, category.xml, 95
Channel Access, EPICS, 116
Channel Archiver, 41
CLASSPATH, 6
Clear Alarm, 64
Command-line arguments in IDE, 22
Compile in Eclipse IDE, 17
Compile with Tycho/Maven, 14
Composite P2 Repository, 13
Console (OSGi), 35
CSS Product, 82
CVS, 80

D
Data Browser, 4
Debugging, 22
Delta Pack, 25
Dependencies, direct and hidden, 83
Dependency Errors, Fixing, 87

E
Eclipse, 6
Environment Variables, 33
EPICS, 3
Exporting a Product, 23
Extension Point, 6

F
Feature Patch, 25
Features, 84
Firewall Warning, 37

G
Git, GitHub, 10

H
Headless Build, 26
Headless Plugin-in Test, 23
Headless RCP Application, 24
Headless RCP Application Problem on Windows, 24

I
ignored future, Archive Engine, 44
Integrated Development Environment (IDE), 17

J
JAR File, 6
Java, 6
Java Development Kit, JDK, 14
Java Message Server, JMS, 50
JCA, 116
JMS2SPEECH, 75
JUnit Plug-in Test, 22
JUnit test, 22

L
Latching Alarm, 64
Launcher, 6
Linked Folder, 28
Logbook, 122
Log file, 27

M
Manifest files, META-INF/MANIFEST.MF, 14
Maven, 14
Memory Settings, Out-of-memory, 88
Meta Data, PV, 115

N
Non-Latching Alarms, 64
Nuisance Alarm, 64

Index

141

O
Operating System (OS), specific code, 6
Operating-system specific plugins, 87
Optional Product Feature, 82
org.csstudio.archive.config, 124
org.csstudio.archive.config.rdb, 124
org.csstudio.archive.engine, 124
org.csstudio.archive.rdb, 125
org.csstudio.archive.reader, 125
org.csstudio.archive.reader.rdb, 125
org.csstudio.archive.writer, 124
org.csstudio.archive.writer.rdb, 124
org.csstudio.core.feature, 107
org.csstudio.core.util.feature, 108
org.csstudio.logbook, 122
org.csstudio.logbook.ui, 122
org.csstudio.navigator.applaunch, 127
org.csstudio.openfile, 120
org.csstudio.security, 111
org.csstudio.ui.menu, 112
org.csstudio.ui.menu.web, 133
org.csstudio.utility.chat, 135
org.csstudio.utility.pv, 115
org.csstudio.utility.pv.epics, 116
org.csstudio.utility.pv.simu, 116

P
P2, 93
P2 Director, 13
P2 Repository, 12
Plug-in, 6
plugin_customization.ini, 30
Plug-in Dependency Validation, 87
POM Files, pom.xml, 14
Preferences, 29
preferences.ini, 29
Process Variable (PV), 3
Product, 6
Product, Creating, 84
Project Explorer, 20
Projects in Workspace, 28

R
Relational Database (RDB), 40
Rich Client Platform (RCP), 6

S
Shared Folders, 28
Source Code, 10
Stack Trace, 6
Standard Window Toolkit (SWT), 6
Symbolic Links, 28

T
Target Editor, 19
Target Platform, 18
Team Support (CVS, ...), 80
Test-driven Development, 22
Tycho, 14

W
Workspace, 27
write period, Archive Engine, 44

