
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Writing Device Support

Eric Norum
November 16, 2004

Getting Started with EPICS
Lecture Series

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Writing Device Support – Scope

• An overview of the concepts associated with writing EPICS
Device Support routines.

• Examples show the “stone knives and bearskins” approach.
• The ASYN package provides a framework which makes writing

device support much easier.
- The concepts presented here still apply.

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Writing Device Support – Outline

• What is ‘Device Support’?
• The .dbd file entry
• The driver DSET
• Device addresses
• Support routines
• Using interrupts
• Asynchronous input/output
• Callbacks

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

What is ‘Device Support’?

• Interface between record and hardware
• A set of routines for record support to call

- The record type determines the required set of routines
- These routines have full read/write access to any record field

• Determines synchronous/asynchronous nature of record
• Performs record I/O

- Provides interrupt handling mechanism

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Why use device support?

• Could instead make a different record type for each hardware
interface, with fields to allow full control over the provided
facilities.

• A separate device support level provides several advantages:
- Users need not learn a new record type for each type of device
- Increases modularity

- I/O hardware changes are less disruptive
- Device support is simpler than record support
- Hardware interface code is isolated from record API

• Custom records are available if really needed.
- By which I mean “really, really, really needed!”
- Existing record types are sufficient for most applications.

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

How does a record find its device support?

Through .dbd ‘device’ statements:

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The .dbd file entry

• The IOC discovers device support from entries in .dbd files
device(recType,addrType,dsetName,”dtypeName”)

• addrType is one of
AB_IO BITBUS_IO CAMAC_IO GPIB_IO
INST_IO RF_IO VME_IO VXI_IO

• dsetName is the name of the C Device Support Entry Table (DSET)
• By convention name indicates record and hardware type:
device(ai, GPIB_IO, devAidg535, "dg535")
device(bi, VME_IO, devBiXy240, "XYCOM-240")

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET

• A C structure containing pointers to functions
• Content dependent upon record type
• Each device support layer defines a DSET with pointers to its

own functions
• A DSET structure declaration looks like:

struct dset {
long number;
long (*report)(int level);
long (*initialize)(int pass);
long (*initRecord)(struct … *precord);
long (*getIoIntInfo)(…);
… read/write and other routines as required

};
• number specifies number of pointers (often 5 or 6)
• A NULL is given when an optional routine is not implemented
• DSET structures and functions are usually declared static

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – initialize

long initialize(int pass);

• Initializes the device support layer
• Optional routine, not always needed
• Used for one-time startup operations:

- Start background tasks
- Create shared tables

• Called twice by iocInit()
- pass=0 – Before any record initialization

- Doesn’t usually access hardware since device address
information is not yet known

- pass=1 – After all record initialization
- Can be used as a final startup step. All device address

information is now known

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – initRecord

long initRecord(struct … *precord);

• Called by iocInit() once for each record with matching DTYP
• Optional routine, but usually supplied
• Routines often

- Validate the INP or OUTP field
- Verify that addressed hardware is present
- Allocate device-specific storage for the record

- Each record contains a void *dpvt pointer for this purpose
- Program device registers
- Set record-specific fields needed for conversion to/from

engineering units

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – initRecord – Device Addresses

• Device support .dbd entry was
device(recType,addrType,dset,"name")

• addrType specifies the type to use for the address link, e.g.
device(bo,VME_IO,devBoXy240,"Xycom XY240")

sets pbo->out:
- pbo->out.type = VME_IO

- Device support uses pbo->out.value.vmeio which is a
struct vmeio {
 short card;
 short signal;
 char *parm;
};

• IOC Application Developer’s Guide describes all types

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – report

long report(int level);

• Called by dbior shell command
• Prints information about current state, hardware status, I/O

statistics, etc.
• Amount of output is controlled by the level argument

- level=0 – list hardware connected, one device per line
- level>0 – provide different type or more detailed information

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – read/write

long read(struct … *precord);
long write(struct … *precord);

• Called when record is processed
• Perform (or initiate) the I/O operation:

- Synchronous input
- Copy value from hardware into precord->rval
- Return 0 (to indicate success)

- Synchronous output
- Copy value from precord->rval to hardware
- Return 0 (to indicate success)

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A simple example (vxWorks or RTEMS)
#include <recGbl.h>
#include <devSup.h>
#include <devLib.h>
#include <biRecord.h>
#include <epicsExport.h>
static long initRecord(struct biRecord *prec){

char *pbyte, dummy;
if ((prec->inp.type != VME_IO) ||
 (prec->inp.value.vmeio.signal < 0) || (prec->inp.value.vmeio.signal > 7)) {

recGblRecordError(S_dev_badInpType, (void *)prec, "devBiFirst: Bad INP");
return -1;

}
if (devRegisterAddress("devBiFirst", atVMEA16, prec->inp.value.vmeio.card, 0x1,

&pbyte) != 0) {
recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Bad VME address");
return -1;

}
if (devReadProbe(1, pbyte, &dummy) < 0) {

recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Nothing there!");
return -1;

}
prec->dpvt = pbyte;
prec->mask = 1 << prec->inp.value.vmeio.signal;
return 0;

}

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A simple example (vxWorks or RTEMS)
static long read(struct biRecord *prec)
{

volatile char *pbyte = (volatile char *)prec->dpvt;

prec->rval = *pbyte;
return 0;

}

static struct {
long number;
long (*report)(int);
long (*initialize)(int);
long (*initRecord)(struct biRecord *);
long (*getIoIntInfo)();
long (*read)(struct biRecord *);

} devBiFirst = {
5, NULL, NULL, initRecord, NULL, read

};
epicsExportAddress(dset,devBiFirst);

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A simple example – device support .dbd file
The .dbd file for the device support routines shown on the

preceding pages might be

device(bi, VME_IO, devBiFirst, “simpleInput”)

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A simple example – application .db file
An application .db file using the device support routines shown

on the preceding pages might contain

record(bi, "$(P):statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C$(C) S$(S)")
}

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

A simple example – application startup script
An application startup script (st.cmd) using the device support

routines shown on the preceding pages might contain

dbLoadRecords("db/example.db","P=test,C=0x1E0,S=0")

which would expand the .db file into

record(bi, "test:statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C0x1E0 S0")
}

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Useful facilities

• ANSI C routines (EPICS headers fill in vendor holes)
- epicsStdio.h – printf, sscanf, epicsSnprintf
- epicsString.h – strcpy, memcpy, epicsStrDup
- epicsStdlib.h – getenv, abs, epicsScanDouble

• OS-independent hardware access (devLib.h)
- Bus address ⇔ Local address conversion
- Interrupt control
- Bus probing

• EPICS routines
- epicsEvent.h – process synchronization semaphore
- epicsMutex.h – mutual-exclusion semaphore
- epicsThread.h – multithreading support
- recGbl.h – record error and alarm reporting

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Device interrupts

• vxWorks/RTEMS interrupt handlers can be written in C
• VME interrupts have two parameters

- Interrupt level (1-7, but don’t use level 7) – often set with on-
board jumpers or DIP switches

- Interrupt vector (0-255, <64 reserved on MC680x0) – often set
by writing to an on-board register

• OS initialization takes two calls
1. Connect interrupt handler to vector

devConnectInterruptVME(unsigned vectorNumber,
 void (*pFunction)(void *),void *parameter);

2. Enable interrupt from VME to CPU
devEnableInterruptLevelVME (unsigned level);

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

I/O interrupt record processing

• Record is processed when hardware interrupt occurs
• Granularity depends on device support and hardware

- Interrupt per-channel vs. interrupt per-card
• #include <dbScan.h> to get additional declarations
• Call scanIoInit once for each interrupt source to initialize a

local value:
scanIoInit(&ioscanpvt);

• DSET must provide a getIoIntInfo routine to specify the
interrupt source associated with a record – a single interrupt
source can be associated with more than one record

• Interrupt handler calls scanIoRequest with the ‘ioscanpvt’
value for that source – this is one of the very few routines
which may be called from an interrupt handler

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – getIoIntInfo

long getIoIntInfo(int cmd, struct … *precord,
 IOSCANPVT *ppvt);

• Set *ppvt to the value of the IOSCANPVT variable for the
interrupt source to be associated with this record

• Must have already called scanIoInit to initialize the
IOSCANPVT variable

• Return 0 to indicate success or non-zero to indicate failure – in
which case the record SCAN field will be set to Passive

• Routine is called with
- (cmd=0) when record is set to SCAN=I/O Intr
- (cmd=1) when record SCAN field is set to any other value

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

The DSET – specialLinconv

long specialLinconv(struct … *precord, int after);

• Analog input (ai) and output (ao) record DSETs include this
sixth routine

• Called just before (after=0) and just after (after=1) the value
of the LINR, EGUL or EGUF fields changes

• “Before” usually does nothing
• “After” recalculates ESLO from EGUL/EGUF and the hardware

range
• If record LINR field is Linear ai record processing will

compute val as
val = ((rval + roff) * aslo + aoff) * eslo + eoff

Ao record processing is similar, but in reverse

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Asynchronous I/O

• Device support must not wait for slow I/O
• Hardware read/write operations which take “a long time” to

complete must use asynchronous record processing
- TI/O ≥ 100 µs – definitely “a long time”
- TI/O ≤ 10 µs – definitely “not a long time”
- 10 µs < TI/O < 100 µs – ???

• If device does not provide a completion interrupt a “worker”
thread can be created to perform the I/O
- this technique is used for Ethernet-attached devices

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Asynchronous I/O – read/write operation

• Check value of precord->pact and if zero:
- Set precord->pact to 1
- Start the I/O operation

- write hardware or send message to worker thread
- Return 0

• When operation completes run the following code from a
thread (i.e. NOT from an interrupt handler)
struct rset *prset = (struct rset *)precord->rset;
dbScanLock(precord);
(*prset->process)(precord);
dbScanUnlock(precord);

• The record’s process routine will call the device
support read/write routine – with precord->pact=1
- Complete the I/O, set rval, etc.

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Asynchronous I/O – callbacks

• An interrupt handler must not call a record’s process routine
directly

• Use the callback system (callback.h) to do this
• Declare a callback variable

CALLBACK myCallback;

• Issue the following from the interrupt handler
callbackRequestProcessCallback(&myCallBack,

 priorityLow, precord);

• This queues a request to a callback handler thread which will
perform the lock/process/unlock operations shown on the
previous page

• There are three callback handler threads
- With priorities Low, Medium and High

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Asynchronous I/O – ASYN

• This should be your first consideration for new device support
• It provides a powerful, flexible framework for writing device

support for
- Message-based asynchronous devices
- Register-based synchronous devices

• Will be completely described in a subsequent lecture

