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Writing Device Support – Scope

• An overview of the concepts associated with writing EPICS
Device Support routines.

• Examples show the “stone knives and bearskins” approach.
• The ASYN package provides a framework which makes writing

device support much easier.
- The concepts presented here still apply.
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Writing Device Support – Outline

• What is ‘Device Support’?
• The .dbd file entry
• The driver DSET
• Device addresses
• Support routines
• Using interrupts
• Asynchronous input/output
• Callbacks
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What is ‘Device Support’?

• Interface between record and hardware
• A set of routines for record support to call

- The record type determines the required set of routines
- These routines have full read/write access to any record field

• Determines synchronous/asynchronous nature of record
• Performs record I/O

- Provides interrupt handling mechanism
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Why use device support?

• Could instead make a different record type for each hardware
interface, with fields to allow full control over the provided
facilities.

• A separate device support level provides several advantages:
- Users need not learn a new record type for each type of device
- Increases modularity

- I/O hardware changes are less disruptive
- Device support is simpler than record support
- Hardware interface code is isolated from record API

• Custom records are available if really needed.
- By which I mean “really, really, really needed!”
- Existing record types are sufficient for most applications.
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How does a record find its device support?
   

Through .dbd ‘device’ statements:
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The .dbd file entry

• The IOC discovers device support from entries in .dbd files
device(recType,addrType,dsetName,”dtypeName”)

• addrType is one of
AB_IO BITBUS_IO CAMAC_IO GPIB_IO
INST_IO RF_IO VME_IO VXI_IO

• dsetName is the name of the C Device Support Entry Table (DSET)
• By convention name indicates record and hardware type:
device(ai, GPIB_IO, devAidg535, "dg535")
device(bi, VME_IO, devBiXy240, "XYCOM-240")
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The DSET

• A C structure containing pointers to functions
• Content dependent upon record type
• Each device support layer defines a DSET with pointers to its

own functions
• A DSET structure declaration looks like:

struct dset {
long number;
long (*report)(int level);
long (*initialize)(int pass);
long (*initRecord)(struct … *precord);
long (*getIoIntInfo)(…);
… read/write and other routines as required

};
• number specifies number of pointers (often 5 or 6)
• A NULL is given when an optional routine is not implemented
• DSET structures and functions are usually declared static
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The DSET – initialize

long initialize(int pass);

• Initializes the device support layer
• Optional routine, not always needed
• Used for one-time startup operations:

- Start background tasks
- Create shared tables

• Called twice by iocInit()
- pass=0 – Before any record initialization

- Doesn’t usually access hardware since device address
information is not yet known

- pass=1 – After all record initialization
- Can be used as a final startup step.  All device address

information is now known
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The DSET – initRecord

long initRecord(struct … *precord);

• Called by iocInit() once for each record with matching DTYP
• Optional routine, but usually supplied
• Routines often

- Validate the INP or OUTP field
- Verify that addressed hardware is present
- Allocate device-specific storage for the record

- Each record contains a void *dpvt pointer for this purpose
- Program device registers
- Set record-specific fields needed for conversion to/from

engineering units
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The DSET – initRecord – Device Addresses

• Device support .dbd entry was
device(recType,addrType,dset,"name")

• addrType specifies the type to use for the address link, e.g.
device(bo,VME_IO,devBoXy240,"Xycom XY240")

sets pbo->out:
- pbo->out.type = VME_IO

- Device support uses pbo->out.value.vmeio which is a
struct vmeio {
    short card;
    short signal;
    char *parm;
};

• IOC Application Developer’s Guide describes all types
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The DSET – report

long report(int level);

• Called by dbior shell command
• Prints information about current state, hardware status, I/O

statistics, etc.
• Amount of output is controlled by the level argument

- level=0 – list hardware connected, one device per line
- level>0 – provide different type or more detailed information
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The DSET – read/write

long read(struct … *precord);
long write(struct … *precord);

• Called when record is processed
• Perform (or initiate) the I/O operation:

- Synchronous input
- Copy value from hardware into precord->rval
- Return 0 (to indicate success)

- Synchronous output
- Copy value from precord->rval to hardware
- Return 0 (to indicate success)
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A simple example (vxWorks or RTEMS)
#include <recGbl.h>
#include <devSup.h>
#include <devLib.h>
#include <biRecord.h>
#include <epicsExport.h>
static long initRecord(struct biRecord *prec){

char *pbyte, dummy;
if ((prec->inp.type != VME_IO) ||
    (prec->inp.value.vmeio.signal < 0) || (prec->inp.value.vmeio.signal > 7)) {

recGblRecordError(S_dev_badInpType, (void *)prec, "devBiFirst: Bad INP");
return -1;

}
if (devRegisterAddress("devBiFirst", atVMEA16, prec->inp.value.vmeio.card, 0x1,

&pbyte) != 0) {
recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Bad VME address");
return -1;

}
if (devReadProbe(1, pbyte, &dummy) < 0) {

recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Nothing there!");
return -1;

}
prec->dpvt = pbyte;
prec->mask = 1 << prec->inp.value.vmeio.signal;
return 0;

}
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A simple example (vxWorks or RTEMS)
static long read(struct biRecord *prec)
{

volatile char *pbyte = (volatile char *)prec->dpvt;

prec->rval = *pbyte;
return 0;

}

static struct {
long number;
long (*report)(int);
long (*initialize)(int);
long (*initRecord)(struct biRecord *);
long (*getIoIntInfo)();
long (*read)(struct biRecord *);

} devBiFirst = {
5, NULL, NULL, initRecord, NULL, read

};
epicsExportAddress(dset,devBiFirst);
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A simple example – device support .dbd file
The .dbd file for the device support routines shown on the

preceding pages might be

device(bi, VME_IO, devBiFirst, “simpleInput”)
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A simple example – application .db file
An application .db file using the device support routines shown

on the preceding pages might contain

record(bi, "$(P):statusBit")
{
    field(DESC, "Simple example binary input")
    field(DTYP, "simpleInput")
    field(INP, "#C$(C) S$(S)")
}
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A simple example – application startup script
An application startup script (st.cmd) using the device support

routines shown on the preceding pages might contain

dbLoadRecords("db/example.db","P=test,C=0x1E0,S=0")

which would expand the .db file into

record(bi, "test:statusBit")
{
    field(DESC, "Simple example binary input")
    field(DTYP, "simpleInput")
    field(INP, "#C0x1E0 S0")
}
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Useful facilities

• ANSI C routines (EPICS headers fill in vendor holes)
- epicsStdio.h – printf, sscanf, epicsSnprintf
- epicsString.h – strcpy, memcpy, epicsStrDup
- epicsStdlib.h – getenv, abs, epicsScanDouble

• OS-independent hardware access (devLib.h)
- Bus address ⇔ Local address conversion
- Interrupt control
- Bus probing

• EPICS routines
- epicsEvent.h – process synchronization semaphore
- epicsMutex.h – mutual-exclusion semaphore
- epicsThread.h – multithreading support
- recGbl.h – record error and alarm reporting
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Device interrupts

• vxWorks/RTEMS interrupt handlers can be written in C
• VME interrupts have two parameters

- Interrupt level (1-7, but don’t use level 7) – often set with on-
board jumpers or DIP switches

- Interrupt vector (0-255, <64 reserved on MC680x0) – often set
by writing to an on-board register

• OS initialization takes two calls
1. Connect interrupt handler to vector

devConnectInterruptVME(unsigned vectorNumber,
         void (*pFunction)(void *),void *parameter);

2. Enable interrupt from VME to CPU
devEnableInterruptLevelVME (unsigned level);
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I/O interrupt record processing

• Record is processed when hardware interrupt occurs
• Granularity depends on device support and hardware

- Interrupt per-channel vs. interrupt per-card
• #include <dbScan.h> to get additional declarations
• Call scanIoInit once for each interrupt source to initialize a

local value:
scanIoInit(&ioscanpvt);

• DSET must provide a getIoIntInfo routine to specify the
interrupt source associated with a record – a single interrupt
source can be associated with more than one record

• Interrupt handler calls scanIoRequest with the ‘ioscanpvt’
value for that source – this is one of the very few routines
which may be called from an interrupt handler
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The DSET – getIoIntInfo

long getIoIntInfo(int cmd, struct … *precord,
  IOSCANPVT *ppvt);

• Set *ppvt to the value of the IOSCANPVT variable for the
interrupt source to be associated with this record

• Must have already called scanIoInit to initialize the
IOSCANPVT variable

• Return 0 to indicate success or non-zero to indicate failure – in
which case the record SCAN field will be set to Passive

• Routine is called with
- (cmd=0) when record is set to SCAN=I/O Intr
- (cmd=1) when record SCAN field is set to any other value
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The DSET – specialLinconv

long specialLinconv(struct … *precord, int after);

• Analog input (ai) and output (ao) record DSETs include this
sixth routine

• Called just before (after=0) and just after (after=1) the value
of the LINR, EGUL or EGUF fields changes

• “Before” usually does nothing
• “After” recalculates ESLO from EGUL/EGUF and the hardware

range
• If record LINR field is Linear ai record processing will

compute val as
val = ((rval + roff) * aslo + aoff) * eslo + eoff

Ao record processing is similar, but in reverse
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Asynchronous I/O

• Device support must not wait for slow I/O
• Hardware read/write operations which take “a long time” to

complete must use asynchronous record processing
- TI/O ≥ 100 µs – definitely “a long time”
- TI/O ≤ 10 µs – definitely “not a long time”
- 10 µs < TI/O < 100 µs – ???

• If device does not provide a completion interrupt a “worker”
thread can be created to perform the I/O
- this technique is used for Ethernet-attached devices
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Asynchronous I/O – read/write operation

• Check value of precord->pact and if zero:
- Set precord->pact to 1
- Start the I/O operation

- write hardware or send message to worker thread
- Return 0

• When operation completes run the following code from a
thread (i.e. NOT from an interrupt handler)
struct rset *prset = (struct rset *)precord->rset;
dbScanLock(precord);
(*prset->process)(precord);
dbScanUnlock(precord);

• The record’s process routine will call the device
support read/write routine – with precord->pact=1
- Complete the I/O, set rval, etc.
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Asynchronous I/O – callbacks

• An interrupt handler must not call a record’s process routine
directly

• Use the callback system (callback.h) to do this
• Declare a callback variable

CALLBACK myCallback;

• Issue the following from the interrupt handler
callbackRequestProcessCallback(&myCallBack, 

      priorityLow, precord);

• This queues a request to a callback handler thread which will
perform the lock/process/unlock operations shown on the
previous page

• There are three callback handler threads
- With priorities Low, Medium and High



Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

Asynchronous I/O – ASYN

• This should be your first consideration for new device support
• It provides a powerful, flexible framework for writing device

support for
- Message-based asynchronous devices
- Register-based synchronous devices

• Will be completely described in a subsequent lecture


