
Channel Access Client Library
Developers Guide

Jeff Hill

Testing Status for Success or
Failure

• Nearly all functions return an integer status
code
– ECA_NORMAL is returned if successful
– Unsuccessful status codes are listed with each

routine in the manual
– An error number and the error's severity are

embedded in CA status (error) constants
• Error numbers and severities can be converted to

strings

Three Ways to Test Status
status = ca_XXXX();
SEVCHK (status,
"ca_XXXX() returned failure status");

if (status & CA_M_SUCCESS) {
printf (“It failed”);

}
if (status != ECA_NORMAL) {
printf (
“It failed because \"%s\"\n",
ca_message (status));

}

What is a CA Channel?

• A channel is a virtual communication link
between a client application and a process
variable

• Once created, a channel can be used to
– Read PV’s current value
– Write PV’s current value
– Subscribe for PV state change notification

Creating a Channel

#include <cadef.h>
chid chan;
Int status = ca_create_channel

(“fred”, 0, 0, 0, & chan);

Channel Clean Up

#include <cadef.h>
int ca_clear_channel (chan);

User Supplied Callback
Functions

• Library employs callback based completion
notification

• A C structure, event_handler_args, is
typically passed to the application supplied
callback
– status field set to one of the CA client error codes
– dbr field is a void pointer to any data that might be

returned
• Will be nill if status isn't ECA_NORMAL or data capsule isn't

expected
– usr, chid, and type are set to the values specified

with the request

Asynchronously Returned Status

• Requests that appear to be valid to the client may
fail in the server
– Writing the string "off" to a floating point field is an

example of this type of error
– Typically, the CA client library function returns status

indicating the validity of the request and whether it was
successfully added to the server’s request queue

– Communication of completion status is deferred until
completion notify callback is called

Channel Access Exceptions

• Global exception notify handler
– Server detects a failure, but there is no associated

request, or the request does not have callback based
completion notification

– Certain internal exceptions within the CA client library
– Failures detected by the SEVCHK macro

• The default global exception callback handler
– Prints a message on the console
– Exits if the exception condition is severe
– May be replaced – see ca_add_exception_event()

Channel Access Data Types

• Arguments of type chtype specify user’s
data type
– One of the DBR_XXXX codes from

db_access.h
• One for each of C’s primitive types
• Several more compound (C structured) types

Primitive Types

• One DBR_XXXX code for each C primitive type
• Data addresses are passed to library as type-less
void * pointers
– Use C typedef dbr_xxxx_t to define storage to

be used with DBR_XXXX type code
– Ensures that C data type is consistent with the
DBR_XXXX type code

• Proper initial interpretation of void pointer
• Also portability and architecture independence

Compound (C Structured) Types

• Several compound (C structure) types
include
– Channel value
– Additional process variable properties

• units, limits, time stamp, or alarm status

– See table in the CA reference manual,
db_access.h

Thread Safety

• Starting with EPICS R3.14 the CA client
library is thread safe on all OS
– In past releases the library was thread safe only

on vxWorks

Client Contexts

• Several CA client side tools running in the
same address space (process) might need to
be independent of each other

• For example, the database CA links and the
sequencer are designed to not share the
same CA client library threads, network
circuits, and or data structures

Client Contexts

• Each thread that calls ca_context_create()
for the first time, directly or implicitly, when
calling a CA routine for the first time, creates a
CA client library context

• A CA client library context contains all of the
threads, network circuits, and data structures
required to connect and communicate with the
channels that a CA client application has created

• The priority of threads spawned by the library are
at fixed offsets from the priority of the thread that
called ca_context_create()

Client Contexts

• User thread joins context
– Call ca_attach_context()
– Pass context identifier returned from
ca_current_context() when it is called
by thread that created the context

• A context can be cleaned up
– Call ca_context_destroy()
– First destroy any channels or application

specific threads that are using it

Preemptive Callback to User
Code

• Preemptive callback
– User's callback functions might be called by CA's

auxiliary threads when the user’s initiating thread is not
executing in library

• Callbacks do not preempt callbacks
– When the library invokes a user's callback it will wait

for any current callback to complete prior to executing
another callback function

• The programmer specifies if preemptive call back
is enabled when creating a CA context
– Preemptive call back is disabled by default.

Traditional Single Threaded
Application

• To set up a traditional single threaded client
you will need code like this

int status = ca_context_create (
ca_disable_preemptive_callback);

SEVCHK (status,
“context create failed”);

• Application must periodically call
ca_pend_event() to schedule library’s background
activities

Preemptive Callback Based
Application

• To set up a preemptive callback enabled CA
client context you will need code like this

int status = ca_context_create (
ca_enable_preemptive_callback);

SEVCHK (status,
“failed to create CA context”);

Connection Management

• CA servers will be restarted, and that network connectivity
is transient

• New channels are typically initially in a disconnected state
• The library continuously monitors the network and tries to

keep channels in a connected state

Synchronizing With Channel Connection
State Changes

• Block in ca_pend_io() after creating channel(s)
– Simple, short lifespan applications don’t work well if connectivity

changes
– Nill connection state notify callback function pointer must be

supplied

• Install connection state callback notification when creating
the channel
– Long Lifespan, connection state driven applications
– ca_pend_io () will not block

Native Type and Native Element
Count

• When connected, a channels storage type
and maximum element count are cached in
the client library
– ca_field_type (chid)
– ca_element_count (chid)

Request Queuing

• Requests to a CA server are queued
• This queue is not flushed until…

– One of ca_flush_io, ca_pend_io,
ca_pend_event, or ca_sg_pend are called

– Maximum queue size is exceeded
• Several requests may be combined

– Important efficiently gains when passing
through OS and network layers

Read Process Variable

• Ordinary get
– Directly updates your variable
– Simple applications
– Value returned must not be used until success is

returned from ca_pend_io()
• Get callback

– Value is returned to completion notify callback

Ordinary Get Example

#include <cadef.h>
dbr_double_t val;
int status = ca_get (

DBR_DOUBLE, chan, &val);

Get Callback Example

#include <cadef.h>
void myCallback (

struct event_handler_args){}

int status = ca_get_callback (
DBR_DOUBLE, chan,
myCallback, 0);

Write Process Variable

• Ordinary put
– No response message if successful

• Optimized network usage
• Failure notification goes to global exception callback handler

– If record is busy, intermediate values are dropped

• Put callback
– Response message always sent

• After cascaded record processing completes

– If record is busy, intermediate values are not dropped

Ordinary Put Example

#include <cadef.h>

dbr_double_t val = 3.3;
int status = ca_put (

DBR_DOUBLE, chan, & val);

Put Callback Example

#include <cadef.h>
void myCallback (

struct event_handler_args){}
dbr_double_t val = 3.3;
int status = ca_put_callback (

DBR_DOUBLE, chan, & val,
myCallback, 0);

Subscribe For Process Variable
State Change Updates

• Only one request message, but many
response messages
– Optimized network usage
– Lower latency state change notification

• Currently three update triggering events
– GUI value state change
– Archive value state change
– Alarm status and severity state change

Subscription Install Example

#include <cadef.h>
void myCallBack (
struct event_handler_args) {}

unsigned long nElements = 1;
evid id;
int status = ca_create_subscription
(DBR_DOUBLE, nElements, chan,
DBE_VALUE, myCallback, 0, & id);

Subscription Cancel Example

#include <cadef.h>

int status =
ca_clear_subscription (
id);

Interface Pitfalls

• Not periodically calling ca_pend_event() in single
threaded application
– Circuits backup to server

• IP kernel buffer shortage in IOC

– Channels don’t connect or disconnect unexpectedly

• The purposes of ca_pend_event() and
ca_pend_io() are frequent source of confusion
– ca_pend_event() schedules background activities
– ca_pend_io() blocks for completion

Load Inducing Pitfalls

• Continuously creating / destroying channels
– Very heavy load on network / servers

• TCP circuit startup / tear down
• Broadcast traffic

• Neglecting to destroy the channel
– Leaks resources allocated in the server

	Channel Access Client Library Developers Guide
	Testing Status for Success or Failure
	Three Ways to Test Status
	What is a CA Channel?
	Creating a Channel
	Channel Clean Up
	User Supplied Callback Functions
	Asynchronously Returned Status
	Channel Access Exceptions
	Channel Access Data Types
	Primitive Types
	Compound (C Structured) Types
	Thread Safety
	Client Contexts
	Client Contexts
	Client Contexts
	Preemptive Callback to User Code
	Traditional Single Threaded Application
	Preemptive Callback Based Application
	Connection Management
	Synchronizing With Channel Connection State Changes
	Native Type and Native Element Count
	Request Queuing
	Read Process Variable
	Ordinary Get Example
	Get Callback Example
	Write Process Variable
	Ordinary Put Example
	Put Callback Example
	Subscribe For Process Variable State Change Updates
	Subscription Install Example
	Subscription Cancel Example
	Interface Pitfalls
	Load Inducing Pitfalls

