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Testing Status for Success or 
Failure

• Nearly all functions return an integer status 
code
– ECA_NORMAL is returned if successful 
– Unsuccessful status codes are listed with each 

routine in the manual
– An error number and the error's severity are 

embedded in CA status (error) constants
• Error numbers and severities can be converted to 

strings



Three Ways to Test Status
status = ca_XXXX(); 
SEVCHK ( status, 
"ca_XXXX() returned failure status"); 

if ( status & CA_M_SUCCESS ) {
printf ( “It failed”); 

} 
if ( status != ECA_NORMAL ) {
printf ( 
“It failed because \"%s\"\n",
ca_message ( status ) ); 

}



What is a CA Channel?

• A channel is a virtual communication link 
between a client application and a process 
variable

• Once created, a channel can be used to
– Read PV’s current value
– Write PV’s current value
– Subscribe for PV state change notification



Creating a Channel

#include <cadef.h> 
chid chan; 
Int status = ca_create_channel 

( “fred”, 0, 0, 0, & chan );



Channel Clean Up

#include <cadef.h> 
int ca_clear_channel ( chan );



User Supplied Callback 
Functions

• Library employs callback based completion 
notification

• A C structure, event_handler_args, is 
typically passed to the application supplied 
callback
– status field set to one of the CA client error codes 
– dbr field is a void pointer to any data that might be 

returned
• Will be nill if status isn't ECA_NORMAL or data capsule isn't 

expected
– usr, chid, and type are set to the values specified 

with the request



Asynchronously Returned Status

• Requests that appear to be valid to the client may 
fail in the server
– Writing the string "off" to a floating point field is an 

example of this type of error
– Typically, the CA client library function returns status 

indicating the validity of the request and whether it was 
successfully added to the server’s request queue

– Communication of completion status is deferred until 
completion notify callback is called



Channel Access Exceptions

• Global exception notify handler
– Server detects a failure, but there is no associated 

request, or the request does not have callback based 
completion notification

– Certain internal exceptions within the CA client library
– Failures detected by the SEVCHK macro 

• The default global exception callback handler 
– Prints a message on the console 
– Exits if the exception condition is severe 
– May be replaced – see ca_add_exception_event()



Channel Access Data Types

• Arguments of type chtype specify user’s 
data type
– One of the DBR_XXXX codes from 

db_access.h
• One for each of C’s primitive types
• Several more compound (C structured) types



Primitive Types

• One DBR_XXXX code for each C primitive type
• Data addresses are passed to library as type-less 
void * pointers 
– Use C typedef dbr_xxxx_t to define storage to 

be used with DBR_XXXX type code
– Ensures that C data type is consistent with the 
DBR_XXXX type code

• Proper initial interpretation of void pointer
• Also portability and architecture independence



Compound (C Structured) Types

• Several compound (C structure) types 
include
– Channel value
– Additional process variable properties 

• units, limits, time stamp, or alarm status

– See table in the CA reference manual, 
db_access.h



Thread Safety

• Starting with EPICS R3.14 the CA client 
library is thread safe on all OS 
– In past releases the library was thread safe only 

on vxWorks



Client Contexts

• Several CA client side tools running in the 
same address space (process) might need to 
be independent of each other 

• For example, the database CA links and the 
sequencer are designed to not share the 
same CA client library threads, network 
circuits, and or data structures



Client Contexts

• Each thread that calls ca_context_create()
for the first time, directly or implicitly, when 
calling a CA routine for the first time, creates a 
CA client library context

• A CA client library context contains all of the 
threads, network circuits, and data structures 
required to connect and communicate with the 
channels that a CA client application has created

• The priority of  threads spawned by the library are 
at fixed offsets from the priority of the thread that 
called ca_context_create()



Client Contexts

• User thread joins context
– Call ca_attach_context()
– Pass context identifier returned from 
ca_current_context() when it is called 
by thread that created the context

• A context can be cleaned up
– Call ca_context_destroy()
– First destroy any channels or application 

specific threads that are using it



Preemptive Callback to User 
Code

• Preemptive callback 
– User's callback functions might be called by CA's 

auxiliary threads when the user’s initiating thread is not 
executing in library

• Callbacks do not preempt callbacks
– When the library invokes a user's callback it will wait 

for any current callback to complete prior to executing 
another callback function

• The programmer specifies if preemptive call back 
is enabled when creating a CA context 
– Preemptive call back is disabled by default.



Traditional Single Threaded 
Application

• To set up a traditional single threaded client 
you will need code like this 

int status = ca_context_create ( 
ca_disable_preemptive_callback );

SEVCHK ( status, 
“context create failed” );

• Application must periodically call 
ca_pend_event() to schedule library’s background 
activities



Preemptive Callback Based 
Application

• To set up a preemptive callback enabled CA 
client context you will need code like this 

int status = ca_context_create ( 
ca_enable_preemptive_callback );

SEVCHK ( status, 
“failed to create CA context” );



Connection Management

• CA servers will be restarted, and that network connectivity 
is transient

• New channels are typically initially in a disconnected state
• The library continuously monitors the network and tries to 

keep channels in a connected state



Synchronizing With Channel Connection 
State Changes

• Block in ca_pend_io() after creating channel(s)
– Simple, short lifespan applications don’t work well if connectivity 

changes
– Nill connection state notify callback function pointer must be 

supplied

• Install connection state callback notification when creating 
the channel
– Long Lifespan, connection state driven applications
– ca_pend_io () will not block



Native Type and Native Element 
Count

• When connected, a channels storage type 
and maximum element count are cached in 
the client library
– ca_field_type ( chid )
– ca_element_count ( chid )



Request Queuing

• Requests to a CA server are queued 
• This queue is not flushed until…

– One of ca_flush_io, ca_pend_io, 
ca_pend_event, or ca_sg_pend are called 

– Maximum queue size is exceeded
• Several requests may be combined 

– Important efficiently gains when passing 
through OS and network layers



Read Process Variable

• Ordinary get
– Directly updates your variable
– Simple applications
– Value returned must not be used until success is 

returned from ca_pend_io()
• Get callback

– Value is returned to completion notify callback



Ordinary Get Example

#include <cadef.h> 
dbr_double_t val;
int status = ca_get ( 

DBR_DOUBLE, chan, &val ); 



Get Callback Example

#include <cadef.h> 
void myCallback (

struct event_handler_args ){}

int status = ca_get_callback ( 
DBR_DOUBLE, chan, 
myCallback, 0 ); 



Write Process Variable

• Ordinary put
– No response message if successful

• Optimized network usage
• Failure notification goes to global exception callback handler

– If record is busy, intermediate values are dropped

• Put callback
– Response message always sent 

• After cascaded record processing completes

– If record is busy, intermediate values are not dropped



Ordinary Put Example

#include <cadef.h> 

dbr_double_t val = 3.3;
int status = ca_put ( 

DBR_DOUBLE, chan, & val ); 



Put Callback Example

#include <cadef.h>
void myCallback (

struct event_handler_args ){}
dbr_double_t val = 3.3;
int status = ca_put_callback ( 

DBR_DOUBLE, chan, & val, 
myCallback, 0 ); 



Subscribe For Process Variable 
State Change Updates

• Only one request message, but many 
response messages
– Optimized network usage
– Lower latency state change notification

• Currently three update triggering events
– GUI value state change
– Archive value state change
– Alarm status and severity state change



Subscription Install Example

#include <cadef.h> 
void myCallBack ( 
struct event_handler_args ) {}

unsigned long nElements = 1;
evid id;
int status = ca_create_subscription
( DBR_DOUBLE, nElements, chan, 
DBE_VALUE, myCallback, 0, & id ); 



Subscription Cancel Example

#include <cadef.h> 

int status = 
ca_clear_subscription ( 
id );



Interface Pitfalls

• Not periodically calling ca_pend_event() in single 
threaded application
– Circuits backup to server

• IP kernel buffer shortage in IOC

– Channels don’t connect or disconnect unexpectedly

• The purposes of ca_pend_event() and 
ca_pend_io() are frequent source of confusion
– ca_pend_event() schedules background activities
– ca_pend_io() blocks for completion



Load Inducing Pitfalls

• Continuously creating / destroying channels
– Very heavy load on network / servers

• TCP circuit startup / tear down
• Broadcast traffic

• Neglecting to destroy the channel
– Leaks resources allocated in the server
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