Authentication and Authorization

Authentication and Authorization
No Warranty

Although the programs and procedures described in this manual are meant to be helpful instruments for archiving, maintaining and retrieving control system data, there is no warranty, either expressed or implied, including, but not limited to, ﬁtness for a particular purpose. The entire risk as to the quality and performance of the programs and procedures is with you. Should the programs or procedures prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event will anybody, including the persons mentioned in this document, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the programs (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the programs to operate with any other programs).

Author: Kay Kasemir, kasemirk@ornl.gov

Version: April 7, 2009
1 Overview

Authentication is the act of confirming a user’s identity, typically by prompting for a user name and password, and trusting that the user is who he claims to be if the password checks out OK. Authorization is the process of determining if an authenticated user is allowed to perform a certain operation, typically by consulting some type of database that lists the permissions of all the known users.

CSS has a …platform.security API for authentication and authorization (A&A), with several implementing plugins [1,2]. A certain understanding of these mechanisms is required even if you want to start out by providing all users with full access to all features, because missing A&A support can result in restricted access for all users.

	[image: image1.png]CSS Application

org.csstudio.platform.security

l oginiodie s auborzaionProvider
org.csstudio. orgcsstudio.
platform.
jaasAuthentiation IdapAuthentiation

JAAS

auth conf. —

	Fig 1: CSS Extension Points for auth & auth.

2 Authentication: org.csstudio.platform.loginModule

This CSS extension point allows plugins to provide authentication. CSS expects exactly one implementation. If multiple implementations are found, the result is the same as having none: Nobody can authenticate. Authentication is typically invoked when starting CSS, and is later also available via the menu item File/Switch User.

2.1 org.csstudio.platform.jaasAuthentication

This plugin implements authentication based on JAAS, the Java Authentication and Authorization Service [3]. JAAS in turn is highly configurable to use for example LDAP [4]. The plugin contains a JAAS configuration file

conf/auth.conf

The file contains the following examples to get you started, but you might have to consult the JAAS documentation for details:

· Dummy: Accepts every user name and password except for the user name “fail”. Useful for testing or when you don’t really want to support authentication.

· Kerberos

· LDAP for different LDAP servers

Since the auth.conf file can list many possible configurations, the jaasAuthentication plugin uses a preference setting to determine which configuration to use. You should set this preference in the plugin_customization.ini file of the CSS product:

Select jaasAuthentication config
org.csstudio.platform.jaasAuthentication/jaasconfig=Dummy

To add your authentication method, you could extend the auth.conf file and then select your entry via the jaasconfig preference. Alternatively, you can use the preference setting jaas_config_source=PreferencePage
and then provide what you would have added to auth.conf in a jaas_prefs_config preference variable.

This allows you to add JAAS settings from a plugin_customization file without having to change auth.conf which gets compiled into the jaasAuthentication plugin.

For examples see preferences.ini in jaasAuthentication

2.2 org.csstudio.platform.jaasAuthentication.ui

This plugin allows setting of jaasconfig preferences from the Eclipse preference GUI.

2.3 JAAS LDAP Authentication via JndiLoginModule

To use LDAP authentication with the standard JAAS JndiLoginModule, your LDAP server must provide user and password information in posixAccount entries as they are also used for Linux accounts.

LDAP user/password example suitable for JAAS

com.sun.security.auth.module.JndiLoginModule
dn: uid=fred,ou=People,dc=test,dc=ics

objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: posixAccount
objectClass: top
uid: fred
userPassword: {CRYPT}xxxxxxxxxx

cn: Fred Testuser

sn: Fred

homeDirectory: /home/fred

uidNumber: 42

gidNumber: 42

Fundamentally, the user name and password entered by the user must match the uid
 and userPassword in LDAP. The userPassword must be in {CRYPT} format because the JAAS JndiLoginModule only handles the {crypt} format. The JndiLoginModule also requires uidNumber and guiNumber entries as part of the posixAccount object class, even though CSS will not use that information. For full details refer to the javadoc of the JAAS JndiLoginModule
[3].

2.4 JAAS LDAP Authentication via LDAPBindLoginModule

The standard JAAS JndiLoginModule requires read access to the password information in LDAP. If your LDAP server administrator does not allow this for security concerns, you can select the custom JAAS login module

org.csstudio.platform.internal.jaasauthentication.LDAPBindLoginModule
which authenticates to LDAP by using a simple ‘bind’.

The entries on the LDAP server look as in the JndiLoginModule case, except that the only thing which really matters is the dn: and userPassword:. The LDAPBindModule will try to bind to a DN, and the LDAP server checks the password. The login module will not attempt to read anything from LDAP, so the remaining entries don’t matter.

It may be that the LDAP server only handles the ‘bind’ for passwords in a certain format. Specifically, it may not allow a bind for entries with {crypt} passwords, which clashes with the previous case.

2.5 JAAS Kerberos Authentication

The conf/auth.conf file in the jaasAuthentication plugin contains an example for using the JAAS Krb5LoginModule, which in turn uses Kerberos. Additional environment variables may be needed, refer to the JAAS documentation.

3 Authorization: org.csstudio.platform.authorizationProvider

This extension point allows plugins to provide authorization. The data model is based on Users who have Rights, and Actions that require Rights. Rights are described via Roles and Groups:

· User Name of an authenticated user, for example “Fred”.

· Action ID Identifier for a certain action, for example “alarm_ack” for the acknowledgement of alarms. Also called Authorization ID.

· Role A site-specific role that a user might have, for example “ADMIN”, “OPERATOR” or “GUEST”.

· Group A site-specific group like “VACUUM” or “CRYO”

· Right The combination of role and group. User “Fred” might be an “ADMIN” in the “CRYO” group but only a “GUEST” in the “VACUUM” group.

	[image: image2.png]RightsManagementService
~Map<User, RightSet> rights.

Tights

+bool hasRights(User, ActioniD)

authProvider

‘AuthorizationProvider rights

+RightSet getRights(User)
+RightSet getRights(ActioniD)

User RighiSe!
~name
0 7

1 rights

-role.
- group

	Fig 2: CSS Authorization Data Model. Applications actually use the SecurityFacade API which internally calls the RightsManagementService.

3.1 org.csstudio.platform.sns.dummyAuthorization

This plugin always authorizes everybody to do anything. Note that it’s still required to be authenticated, because authorization is only checked for authenticated users. Non-authenticated users have no rights.

3.2 org.csstudio.platform.sns.ldapAuthorization

This plugin stores the Authorization info in LDAP. The rights assigned to each user and the rights required to execute a certain action are in two separate sections under a common base DN, in the following examples:

ou=CSSAuthorization,dc=test,dc=ics
Before entering CSS authorization information, you need to add the following schema definitions to your LDAP server:

css.schema

Authorization related scheme elements

Based on information from http://css.desy.de
objectclass (1.3.6.1.4.1.341.999.2 NAME 'cssRole'
 DESC 'Role for CSS authorization: cn is role, ou is group'
 SUP top STRUCTURAL
 MUST cn
 MAY (memberUid $ description))
attributetype (1.3.6.1.4.1.341.999.1.3 NAME 'auid'
 DESC 'name of authorize ID'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})
attributetype (1.3.6.1.4.1.341.999.1.2 NAME 'cssGroupRole'
 DESC 'group and role, it must be in a format of (group,role)'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})
attributetype (1.3.6.1.4.1.341.999.1.1 NAME 'cssActionPath'
 DESC 'the full path for an action or control in css'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})
objectclass (1.3.6.1.4.1.341.999.1 NAME 'cssAuthorizeID'
 DESC 'an authorized ID'
 SUP top STRUCTURAL
 MUST auid
 MAY (cssGroupRole $ cssActionPath $ description))
With OpenLDAP you would add the following to slapd.conf [4]:

 include /etc/openldap/schema/css.schema

With OpenLDAP it might also be useful to control access to the authorization info with an entry similar to this in slapd.conf:

Define which users can write to CSS Authorization

Access to dn.subtree="ou=CSSAuthorization,dc=test,dc=ics"

 by dn.exact="uid=alarm_config_user1,ou=Users,dc=test,dc=ics" write

 by dn.exact="uid=alarm_config_user2,ou=Users,dc=test,dc=ics" write

 by * read

Rights assigned to a user

The CSSGroupRole sub-tree lists all available rights and assigns users to them in entries based on the cssRole schema.

Example:

dn: cn=developer,ou=alarm,ou=CSSGroupRole,ou=CSSAuthorization,dc=test,dc=ics
objectClass: cssRole
cn: developer
memberUid: Fred

memberUid: Jane

dn: cn=operator,ou=alarm,ou=CSSGroupRole,ou=CSSAuthorization,dc=test,dc=ics
objectClass: cssRole
cn: operator
memberUid: operator

This example defines the following user rights:

· Right “developer”/”alarm”:
Users authenticated as “Fred” or “Jane” have the “developer” role in the “alarm” group.

· Right “operator”/”alarm”:
Users authenticated as “operator” have the “operator” role in the “alarm” group.

Rights required by an Action
The CSSAuthorizeID sub-tree lists the Rights required by restricted actions with entries based on the cssAuthorizeID schema.

Example:

dn: auid=alarm_ack,ou=AlarmSystem,ou=CSSAuthorizeID,ou=CSSAuthorization,dc=test,dc=ics
objectClass: cssAuthorizeID
auid: alarm_ack
cssGroupRole: (alarm, developer)
cssGroupRole: (alarm, operator)
dn: auid=alarm_config,ou=AlarmSystem,ou=CSSAuthorizeID,ou=CSSAuthorization,dc=test,dc=ics
objectClass: cssAuthorizeID
auid: alarm_config
cssGroupRole: (alarm, administrator)
cssGroupRole: (alarm, developer)

This example defines the following Action IDs:

· alarm_ack: The CSS alarm system uses this action ID for alarm acknowledgement. Users who want to acknowledge alarms need either alarm/developer or alarm/operator rights(.

· alarm_config: The CSS alarm system uses this ID for alarm configuration actions. Users who want to change the alarm system configuration need the alarm/developer right.

Note how the example entries were listed under ou=AlarmSystem, one level below the CSSAuthorizeID sub-tree. This is purely for administrator convenience to allow grouping of related authorization requirements, for example to put all alarm system related Action IDs into a sub-tree. The authorization code will search all sub-trees of CSSAuthorizeID for entries in the cssAuthorizeID objectClass.

By combining the authorization configuration listed above, you get the following:

· A user authenticated as “operator”, which is likely a shared account, can acknowledge alarms.

· Individuals authenticated as “Fred” or “Jane” can acknowledge and configure alarms.

3.3 org.csstudio.platform.ldapAuthorization

Also based on LDAP, but with a different LDAP schema.

4 Secure Preferences

When the user enters new preference settings via the CSS preference GUI, certain user names and passwords are placed in the Eclipse SecurePreferencesFactory. This includes the alarm system JMS and RDB connection parameters, which are thus encrypted and more secure than the default preference mechanism.

4.1 org.csstudio.sns.passwordprovider
The Eclipse SecurePreferencesFactory requires a password provider, which is used to encrypt the preferences. Eclipse provides implementations for Windows or OS X that can interface with OS-specific key stores, including

· org.eclipse.equinox.security.macosx

· org.eclipse.equinox.security.win32.x86

but on other OS it will fall back to a dialog box that queries the user for a “master” password.

This plugin provides a password without requiring user input. Since the password can be derived from reading the code, it is not 100% secure.
[1]
DESY CSS web page, info about CVS access etc.
http://css.desy.de
[2]
SNS CSS web page, Feb. 2009
https://ics-web.sns.ornl.gov/css/ and
https://ics-web.sns.ornl.gov/css/devel.html
[3]
Sun JAAS home page, Feb. 2009
http://java.sun.com/javase/technologies/security
[4]
Open LDAP, Feb 2009
http://www.openldap.org
(There is currently also a preference flag allow_anonymous_acknowledge. If set ‘true’, everybody can acknowledge alarms. When it is used, the alarm_ack action ID must not be defined.

1

