Alarm System Toolkit

BEAST - Best Ever Alarm System Toolkit
No Warranty

Although the programs and procedures described in this manual are meant to be helpful instruments for archiving, maintaining and retrieving control system data, there is no warranty, either expressed or implied, including, but not limited to, ﬁtness for a particular purpose. The entire risk as to the quality and performance of the programs and procedures is with you. Should the programs or procedures prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event will anybody, including the persons mentioned in this document, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the programs (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the programs to operate with any other programs).

The system described in here is not used in a production environment at this time.
Author: Kay Kasemir, kasemirk@ornl.gov

Version: February 26, 2010
1 Overview

The Alarm Server receives alarms from IOCs via Channel Access. Depending on its configuration, it might annunciate alarms, “latch” or ignore them. Several Alarm Client GUI tools allow users to view current alarms, acknowledge them, invoke operator displays related to the alarm, browse the alarm history, or change the alarm configuration.

	[image: image1.png]

	Fig 1: Alarm System Overview

A relational database (RDB) stores the alarm configuration as well as the current state of all alarms. The configuration includes information for the Alarm Server (what PVs to monitor, whether to latch or annunciate alarms) as well as the Alarm Client GUI (user guidance on an alarm, related display links). The Alarm Server also updates the current alarm state of each PV in the RDB.

While the RDB is good for storing this type of information, it is technically unsuited for triggering GUI updates in response to alarm changes. The GUI would have to poll the RDB at a high rate to learn about alarm state changes. Instead, a more suitable Java Message System (JMS) is used to communicate alarm system changes.

The Alarm Server sends alarm state updates via JMS to clients; it sends annunciations to a voice annunciator. Clients send acknowledgement requests via JMS to the Alarm Server. Clients also send notifications about alarm configuration changes to the Alarm Server as well as other GUI clients, which will then each react by reading the latest configuration from the RDB.

Finally, all JMS messages including generic CSS application log messages can be archived in a Message RDB, which is in principle separate from the alarm system but can be used to trace the history of an alarm from its detection via annunciation and acknowledgment until the alarm eventually cleared.

A minimal setup of the alarm system requires:

1) JMS Server for the alarm GUI and Alarm Server to communicate.

2) RDB with Alarm Server configuration.

3) CSS with the alarm GUI, i.e. Alarm Tree and Alarm Table plugins.

4) Alarm Server.

Optional components:

1) JMS Monitor plugin to view raw JMS messages in GUI for debugging the setup.

2) CSS Annunciator (aka JMS2SPEECH) to annunciate alarm messages.

3) AlarmConfigTool to export/import alarm configurations as XML files and to convert existing ALH configuration files.

4) JMS2RDB to log the alarm system activity (as well as other CSS log messages).

5) Tomcat and Web Reports to view configuration and alarm logs online.

2 JMS Server

The alarm system uses the Java Message Service(JMS) to communicate

· Alarm Updates from the server to the clients (ALARM_SERVER topic). This includes periodic ‘idle’ messages from the server in the absence of any alarm system changes.

· Annunciations from the server to the annunciator (TALK topic)

· Acknowledge requests from clients to the server (ALARM_CLIENT topic)

· Configuration change notifications from clients to the server and other clients (ALARM_CLIENT topic)

Specifically, CSS uses the Apache ActiveMQ implementation of JMS. See http://activemq.apache.org .

There is no need to configure the JMS server instance for the alarm system in particular. You simply have to ‘run’ a JMS server instance and know its URL so that the Alarm GUI and the Alarm Server can connect to it. The Alarm system components will automatically create the required JMS topics, there is no need to create them manually. You can use the same JMS server instance for alarms and the generic CSS application message logging.

In short, for first tests there is no need to configure anything in JMS. Just

· Unpack the ActiveMQ package from the Apache web site

· cd apache-activemq-*/bin

· ./activemq

Eventually, you might want to copy its default configuration file, conf/activemp.xml, into something like my_activemq_setup and then use that configuration file:

· ./activemq xbean:file:/path/to/my_activemq_setup.xml

That way you can disable things that you don't need, like the web monitor, or enable HTTPTransport to allow tunneling though web proxies. Markus Möller (DESY) suggested disabling this section:

 <!-- The store and forward broker networks

 ActiveMQ will listen to -->

 <networkConnectors>

 <networkConnector name="default-nc"
 uri="multicast://default"/>

</networkConnectors>

The default multicast settings would otherwise allow multiple JMS servers on the network to magically find each other and interchange messages, which can be confusing if you did not intend to do this on purpose.

A snapshot with SNS-specific installation details are in the SNS CVS under css_sns/JMSServer.

3 RDB

A relational database holds the alarm system configuration (hierarchy of alarm PVs, how to alarm on them) as well as a snapshot of the current alarm state of each PV.

MySQL and Oracle are supported.

For the initial setup, refer to information in the “dbd” subdirectory of the plugin sources for org.csstudio.alarm.beast.

End users should have no need to know any RDB details because all interactions go through the CSS GUI. Administrators need to know the RDB URL with user, password, and the name of the “root” element of the alarm configuration hierarchy, which need to be consistent in the preference settings of the CSS alarm GUI and the Alarm Server.

4 Initial Alarm Configuration

The basic RDB setup will create the necessary database tables for holding multiple alarm server configurations. As long as they are empty, however the alarm tools will not be able to run because they need at least a “root” element.

You can create an initial root element directly in MySQL like this:

INSERT INTO
 ALARM_TREE(COMPONENT_ID, PARENT_CMPNT_, NAME, CONFIG_TIME)
 VALUES(1, NULL, ‘Annunciator’, NOW());

Alternatively, you can use the AlarmConfigTool to import an initial XML configuration file. Read on to learn more the “root” element and the AlarmConfigTool.

5 Multiple Alarm Configurations

Multiple alarm configurations can be used in parallel. For example, there might be one alarm configuration for the main control room, and a separate one for an auxiliary control room.

Corollary: You have to understand your configuration. If the alarm system components are not using the same configuration, they will not “find” each other.

Configuration example:

	
	Default
	Main Control Room
	Aux. Control Room

	Configuration Root
	Annunciator
	MAIN
	AUX

	JMS ‘server’ topic
	ALARM_SERVER
	MAIN_SERVER
	AUX_SERVER

	JMS ‘client’ topic
	ALARM_CLIENT
	MAIN_CLIENT
	AUX_CLIENT

	JMS ‘talk’ topic
	TALK
	MAIN_TALK
	AUX_TALK

Configuration Root: Each configuration is identified by the “root” element of its alarm configuration in the RDB. Exactly one instance of the alarm server is required for each alarm configuration.

JMS ‘server’, ‘client’ topics: These are used to communicate from the server to the client and vice versa. Their name should use the configuration root followed by “_SERVER” resp. “_CLIENT”. In principle, both server and client messages can use the same topic, i.e. both the server and client topic could be set to just ‘MAIN’ or ‘AUX’. Keeping them separate can be of advantage, though, because is allows tools like the JMS Monitor debug tool to only listen to ‘MAIN_SERVER’ messages without also seeing ‘MAIN_CLIENT’ messages, which can aid in debugging problems later on. In addition, JMS authorization for writing is configured by topic. With ActiveMQ for example one could restrict MAIN_SERVER topic write access to the Alarm Server, while only GUI clients with certain user/password are allowed write access to the MAIN_CLIENT topic. So far this has not been used, but keeping the topics separate and the communication on them unidirectional will prepare you for trying this in the future.

JMS ‘talk’ topic: Having separate talk topics for each configuration as in the above example allows an annunciator program to selectively handle messages from MAIN_TALK, AUX_TALK or both.

6 Configuration of Eclipse Tools In General

Refer to the file

 org.csstudio.sns.product/plugin_customization.ini
for a summary of the Eclipse preference mechanism. Most alarm-relevant defaults are in the file

 org.csstudio.alarm.beast/preferences.ini

Each product (AlarmConfigTool, AlarmServer, …, CSS with Alarm GUI) has a plugin_customization.ini file to override those and other settings, so you have multiple levels of either configuring site-wide defaults at compile time, or setting them when installing the tools, or providing them with the “-pluginCustomization …” command-line switch whenever running the tools.
7 AlarmConfigTool

This command-line tool can

· export alarm configurations into XML files

· import those XML files again (replacing or modifying the configuration)

· create the XML configuration file format from EPICS ALH configuration files (with certain assumptions resp. limitations)

This tool might also be the easiest way to start a new configuration by importing an empty or very basic XML configuration, then editing it in the alarm GUI.

To build, use the Eclipse product file

 org.csstudio.alarm.beast.configtool/AlarmConfigTool.product
To run, refer to the Readme.txt in the AlarmConfigTool’s source directory.

8 Alarm Server

The alarm server reads the alarm configuration from the RDB, connects to all the requested PVs, monitors their state changes and generates alarms, handling annunciation, latching, acknowledgment and some amount of filtering.

You have to start an alarm server instance for each alarm system setup. On Linux systems you may create scripts that perform this via /etc/rc.d/init.d, but it is still up to you to arrange for an Alarm Server to be running. Neither the alarm GUI nor JMS will launch an alarm server for you. The Alarm Server remains running so it can continue to trigger annunciations and log alarm system actions even when no alarm GUI is active.

To build, use the Eclipse product file

 org.csstudio.alarm.beast.server/AlarmServer.product
To run, you probably want to use a customized copy of

 org.csstudio.alarm.beast.server/plugin_customization.ini

Of main interest are

· RDB URL, user, password

· JMS Server URL, user password

· Name of alarm configuration (root element)

· JMS Topics for ALARM_SERVER, ALARM_CLIENT, TALK

· EPICS Channel Access settings

It is possible to run more than one Alarm Server to support different alarm system configurations on the same network as long as they use a different alarm configuration root element and JMS topics for the ALARM_SERVER and ALARM_CLIENT. They may use the same TALK topic to share an annunciator.
9 CSS Alarm GUI

The GUI consists of these plugins

· org.csstudio.alarm.beast.ui.alarmtree:
Hierarchical Alarm Tree, allows configuration as well as acknowledgement.

· org.csstudio.alarm.beast.ui.alarmtable:
Table of currently active alarms. Meant to be the main end-user interface.

· org.csstudio.alarm.beast..msghist:
Table of message log history, can be used to analyze sequence of events from alarm via annunciation to acknowledgement until the alarm finally clears.
Web reports of the alarm log are meant to present this “raw” information in a more user-friendly format.

· org.csstudio.debugging.jmsmonitor:
Can be used to monitor JMS traffic

The plugins need to be added to an instance of CSS, then refer to their online help.

Once the alarm tree and table GUI show up OK and connect to the Alarm Server, there could be an issue trying to use it because the operations for configuring the alarm system and for acknowledging alarms are controlled by CSS authentication and authorization[4]. At a minimum, you have to understand it enough to configure “dummy” authentication.

10 Annunciator

This tool is available as either the Annunciator view for the CSS GUI, or a standalone Annunciator command-line application. Either one listens to a JMS topic and annunciates (speaks) the “TEXT” property of each received JMS MapMessage. When setup to listen to the “TALK” topic used by the Alarm Server, it serves as the alarm voice annunciator. More than one Alarm Server can write to the same “TALK” topic, and in principle other applications could also write to it in order to request annunciation. The tool can actually listen to a list of JMS topics, so it could annunciate alarms from a “TALK” topic used by some alarm server as well as a “VOICE” topic used by another system that wants to trigger annunciations.

10.1 Message Queue Threshold

When more than a configurable number of messages queue up, for example resulting from a flurry of alarms, the tool will only annunciate the first few and then simply say “There are … more messages”, skipping the remaining messages.

Configurable via the preference setting ‘threshold’, default is 3.

10.2 Translations

A list of translations can be provided to aid in the pronunciation of acronyms, for example

 MEBT=mebbit

or even

 MEBT=medium energy beam transport.

The preference setting ‘translations_file’ specifies the name of such a translation file, which in turn contains a sequence of lines

 some_regular_expression_pattern = translation
The program will try to perform all translations on each received message. This can result in problems with follow-up or even recursive translations (MEBT=mebbit, bit=binary digit, dig=digital will turn “MEBT” into “mebbinary digitalit”). To avoid such side effects it is suggested to fix a pronunciation problem at the source by for example changing the alarm system description of a PV.

To use the Annunciator GUI, add the plugin

org.csstudio.alarm.beast.annunciator

to your CSS product.

To build the annunciator as a standalone command-line tool, use the Eclipse product file

 org.csstudio.alarm.beast.annunciator/Annunciator.product
To run, you probably want to use a customized copy of the

 plugin_customization.ini

in the same plugin.

11 JMS2RDB

This tool logs messages received from JMS to message log tables in an RDB.

The Message log is described in [3]

12 Web Reports

There are JSP-based web reports to

· View the alarm configuration

· See snapshot of current alarms

· List disabled alarms

· List ‘stale’ alarms which have been active for a long time

· Create plots of alarm activity over time, charts of 10 most frequent alarms, view detailed log of an alarm PV

See Reports source snapshot on [1] or css_sns/Reports in SNS CVS.

13 Other tools

· org.csstudio.debugging.jmsmonitor is a CSS GUI plugin for monitoring JMS traffic.

· org.csstudio.debugging.rdbshell is a very simple RDB shell (send SQL commands, see response) for the CSS GUI.

· org.csstudio.utility.jmssendcmd is a command-line tool for sending messages to JMS. It can be used to test the Annunciator, to trigger a configuration reload on the alarm server and clients and for other tests.

[1]
SNS CSS web page, Nov. 2008
https://ics-web.sns.ornl.gov/css/ and
https://ics-web.sns.ornl.gov/css/devel.html
[2]
DESY CSS web page, info about CVS access etc.
http://css.desy.de
[3]
“CSS Message Log”, available on https://ics-web.sns.ornl.gov/css/devel.html
[4]
“Authentication and Authorization”, available on https://ics-web.sns.ornl.gov/css/devel.html
1

