RDB Channel Archiver

RDB Channel Archiver

No Warranty

Although the programs and procedures described in this manual are meant to be helpful instruments for archiving, maintaining and retrieving control system data, there is no warranty, either expressed or implied, including, but not limited to, ﬁtness for a particular purpose. The entire risk as to the quality and performance of the programs and procedures is with you. Should the programs or procedures prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event will anybody, including the persons mentioned in this document, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the programs (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the programs to operate with any other programs).

It is also worth mentioning that while SNS plans to transition from the previous Channel Archiver to the system described in here, we are still in the process.
The system described in here is not used in a production environment at this time.
Author: Kay Kasemir, kasemirk@ornl.gov

Version: February 22, 2010
1 Overview

This is a setup guide for testing the new Channel Archiver tools. Familiarity with the previous Channel Archiver toolset is expected [1] since this system is fundamentally similar: An ArchiveEngine takes samples from IOCs via Channel Access and places them in some data storage. Archive client programs then access historic data samples in that storage.

	[image: image1.png]

	Fig 1: RDB Channel Archiver Overview

Main differences to the previous setup:

· Data is no longer stored in custom data and index files but a Relational Database (RDB). Currently MySQL and Oracle are supported.

· The sample engine configuration is also in the RDB and no longer in XML config files.

· Almost all the tools are implemented in Java (with Eclipse, JSP) instead of C++.

· The Control System Studio (CSS) Data Browser can access both the previous XML-RPC network data server and the new RDB-based archive data storage. The previous Java Archive Viewer, ArchiveExport, ArchiveDataClient.pl tools cannot access the RDB-based data.

2 Sources, Binaries

All the Java sources for the ArchiveEngine are included in the source snapshot available for download from the SNS CSS web page [2]. Sources are also in the DESY CVS repository [3].

To build the binaries from sources, locate the following product files and build them per Eclipse instructions:

· org.csstudio.archive.rdb/EngineConfigImport.product
· org.csstudio.archive.engine/ArchiveEngine.product
· org.csstudio.sns.product/SNS_CSS.product (or use the DESY CSS.product)

Even if you plan to use binaries for the ArchiveEngine or CSS you will still need the sources to configure your RDB!

3 Site Specific Settings

Most plugins contain a “preferences.ini” file that lists all the preference settings of a plugin and its defaults. These are the default settings that the creator of the plugin envisioned. They should not be changed without contacting the original author.

Next to the product files mentioned in the previous section there are usually “plugin_customization.ini” files that can override plugin defaults. They are meant for site-specific defaults which you want to be “compiled” into the products deployed at your site. Ideally you edit the plugin_customization.ini files before building the products.

If you don’t want to change the “compiled-in” defaults, or if you need to run the same product with different settings, you can create one or more my_plugin_customization.ini files and specify the one you want to use on the command line via

 -pluginCustomization my_ plugin_customization.in

when starting the product.
4 RDB Setup

Before using the RDB Channel Archiver you need to create the required table structure in your RDB. Currently MySQL and Oracle are supported.

The only difference in the basic table layout is in the TIMESTAMP used to store the time stamps of samples. While the Oracle TIMESTAMP data type already offers nanosecond detail, the MySQL data type of the same name only covers seconds. The MySQL tables therefore have an added “nanosecs” column for this purpose.

There are a few more differences in the SQL dialects, but the ArchiveEngine, CSS Data Browser etc. auto-configure based on the database URL
4.1 RDB URL, User, Password, Schema

The databse URL should follow the format

 jdbc:mysql://[host]:[port]/[database]?user=[user]&password=[pw]
for MySQL or

 jdbc:oracle:thin:[user]/[pw]@//[host]:[port]/[database]

for Oracle respectively to allow the tools to auto-configure. In most cases it is also possible to leave the RDB user name and password out of the URL and pass it via separate command line arguments or Eclipse preferences. For the case of Oracle it might also be required to specify a schema name. In the current SNS test setup, all Oracle archive tables like “sample” need to be accessed with a schema prefix, i.e. “chan_arch.sample”, and this is accomplished by defining “chan_arch” (without the dot) as the scheme prefix.

Any of the methods mentioned under “Site Specific Settings” can be used to provide the URL, user, password, schema.

4.2 Limitations

The Channel Archiver basically stores all samples in one “sample” table. By default, MySQL table sizes are limited to 4GB (See MySQL “show table status” command, column “Max_data_length”). While this can be adjusted, I believe there is still a limit of 4G rows (=samples).

Furthermore, while it will be almost trivial to enter something like

 DELETE FROM sample WHERE smpl_time < …
to delete older samples, this will either not free up any space or require an added OPTIMIZE rebuild that takes a very long time.

The main reason for using Oracle lies in the support for partitioning: While the sample table appears as one table, it is spread over several table partitions based on the sample time and channel name. Spreading by channel name might improve performance because several channels can be written in parallel to different disk locations. Partitioning by time allows quick removal of older samples.

In addition, the org.csstudio.archivereader.rdb implementation used by the Data Browser to read archived data supports an Oracle stored procedure for server-side data reduction which is not available for MySQL.

4.3 Schema/Table Generation
The sources for the plugin org.csstudio.archive.rdb have a “dbd” subdirectory with diagrams of the table model as well as a file

 mysql_schema.txt

that you can source in MySQL to create tables with example indices etc.

The setup for Oracle, i.e. the exact table and index types, partitioning etc is not final at this time. Jeff Patton (pattonjg@ornl.gov) is working on it and we hope to make the final setup available at a later time.

5 Sample Engine Configuration

The sample engine configuration is stored in the RDB. There are several ways to create and modify it.

5.1 General Notes

Sample Engine ID, Name, Port

Inside the RDB a unique ID identifies each sample engine. Most end user tools, however, use the engine Name as an identifier, so it should be unique as well.

Each sample engine has a built-in web server for status information and basic remote control of the engine. When starting the engine on a host, the port number for this HTTPD must be provided. The sample engine URL configured in the RDB should match the format

 http://<host>:<port>/main

Ideally, a future tool will automatically start engines on the configured host and port.

Duplicate Channels

The RDB configuration allows for multiple sample engines. Each sample engine has one or more groups of channels, and each group has one or more channels.

A channel can only be archived once, though, meaning it is illegal to list a channel in more than one group or under more than one sample engine.
5.2 Direct SQL Access

In some cases it might be most convenient to directly modify the sample engine configuration in the RDB via SQL statements. This obviously requires familiarity with the table layout.

5.3 Import previous XML configuration files

The ArchiveConfigImport tool can import XML configuration files very similar to those used by the previous ArchiveEngine into the RDB. The sources contain examples under org.csstudio.archive.rdb/imported_configs.

Example: Import Configuration from XML file

The EngineConfigImport lists available command line options when invoked with the “-help” option. An example invocation would be:

EngineConfigImport
 -rdb_url 'jdbc:mysql://my_host/archive'
 -rdb_user 'archive'
 -rdb_password 'my_password'
 -engine 'test'
 -port 4811
 -config test.xml

The actual call would of course list all arguments on one line. The –rdb.. options describe the RDB connection. The engine name and port number should uniquely identify the engine. Additional options might be needed:

-replace_engine

When an existing configuration for the given engine name is found, the tool will by default not replace it but stop. This option forces it to replace an existing configuration.

-steal_channels

When channels in the imported configuration are already part of another sample engine configuration, those channels will be skipped. This option will instead move the affected channels from their previous sample engine to this one.

-delete_config

This option will not import a new configuration but instead delete an existing configuration for the given engine name.

Example: Export Configuration to XML file

Write configuration for ‘test’ engine to file:

EngineConfigImport
 -rdb_url 'jdbc:mysql://my_host/archive'
 -rdb_user 'archive'
 -rdb_password 'my_password'
 -engine 'test'
 -export >test.xml

Changes from previous XML format

Global engine configuration parameters like “write_period” which used to be in the XML configuration file are now sent to the engine via Eclipse preferences. Their values in the imported configuration file are ignored.

The enablement and disablement of sample groups has changed. It is no longer possible to have one or more channels in a group with a “<disable>” tag. Instead there can be at most one channel marked with an “<enable>” tag.

5.4 Online Config Reports and Editor

There is a JMS/Tomcat based online tool that can generate various statistics including diagrams of groups and channels per engine, samples in the last hour. It can also be used to edit the archive configuration.

See the “Web Reports” link on the SNS CSS development web page [2].

6 Running Archive Engines

The ArchiveEngine lists available command line arguments when invoked with the option “-help”. An example would be this:

ArchiveEngine
 -rdb_url 'jdbc:mysql://my_host/archive'
 -rdb_user 'archive'
 -rdb_password 'my_password'
 -engine 'test'
 -port 4811
The actual call would of course list all arguments on one line. The –rdb.. options describe the RDB connection. The engine name is used to locate the sample engine configuration in the RDB.

The port number is used to start the engine’s web server, see following section “Web Interface”. The port number must match the port number of the sample engine URL in the engine’s configuration; this is a simple sanity check of the archive engine command line arguments.

Additional options might be needed:

-pluginCustomization engine_settings.ini
This option was already mentioned under “Site Specific Settings”. Settings of interest to the ArchiveEngine include

· EPICS Channel Access settings: JCA or CAJ? Address list? Timeouts?

· Global Engine settings: Write period? Buffer reserve?

· Logging: To file? To JMS? Detail? Format?

-data test
The ArchiveEngine is an Eclipse product which uses a “Workspace”. Compared to CSS it hardly uses the workspace. Its only use might be the .metadata/.log file that could contain error messages of the running instance. In any case, each ArchiveEngine instance must have a unique workspace directory, and the suggestion is to use the engine name as the workspace name.

6.1 Web Interface

While the engine is running, its web server is accessible via

 http://<host name>:<port>/main

for example: http://localhost:4811/main.

…/main page

This page gives basic statistics: Start time, run time, number of channels, maybe disconnected channels, write performance.

Note that compared to the previous ArchiveEngine there is no longer a root page like “http://localhost:4811”. You have to use “…/main” to get to the start page.

…/groups and further down

By following the links on the “…/main” page you see information about the channel groups and finally an individual channel down to the last archived value.

…/environment

This link can be used for debugging. It lists for example the EPICS CAJ and JCA settings and JVM information.

6.2 Restarting, Stopping
An engine restart which stops the engine, re-reads the configuration and then starts back up is triggered by accessing the

 http://<host name>:<port>/restart

 URL of the web interface.

Similarly, access to

 http://<host name>:<port>/stop

 will stop the engine.

These URLs must be entered directly into the web browser, they are not accessible as links from an engine’s web page to avoid accidental access by web robots.

7 Using the Data Browser
To use the Data Browser or CSS in general at your site, you will most definitely have to adjust the “Site Specific Settings”. For SNS CSS, there is a commented customization file is under

 CSS/plugins/org.csstudio.sns.product*/plugin_customization.ini

that you can either adjust or use as a starting point for your customization file. Settings of interest are similar to the Archive Engine (EPICS, logging) plus RDB settings for the Data Browser.

Follow the online help to get started.

	[image: image2.png]

	Fig. 2: Data Browser accessing RDB Channel Archiver

[1]
Channel Archiver web page, Oct. 2008,
http://ics-web.sns.ornl.gov/kasemir/archiver/index.html
[2]
SNS CSS web page,
https://ics-web.sns.ornl.gov/css/ and
https://ics-web.sns.ornl.gov/css/devel.html
[3]
DESY CSS web page, info about CVS access etc.
http://css.desy.de
1

