
Database Hands-On: Water Tank and Heater

Exercise 1: Water Tank Simulation
The goal is to simulate the water temperature in a heated tank.
Implement an EPICS database called “tank.db” to accomplish this. The records that drive
the calculation should process at 1 Hz. Assume that the water volume is constant, i.e.
only the heater and the room temperature influence the water temperature.
Implement analog (input, output?) records that allow configuration of the following:

• Room Temperature TR., initialized to 25 deg Celsius.
• Tank Isolation Constant KI, initialized to 0.01.
• Water Volume Heat Capacity cV, initialized to 0.001.
• Water Heater Voltage VH, restricted to 0…110 Volts.

Use record names that start with a macro like “$(user):” to assert that your records are
unique on the network, and set user=t1, t2, … depending on your group!

Create an EDM GUI that allows configuration of these records.

Add a calc record to transform heater voltage VH into heater power PH.
Hint: If your heater coil has a resistance R, its Power dissipation for a given voltage will
be PH =(VH)2/R. Pick your resistance such that your heater e.g. produces about
1100Watts at 110Volt.

Add a slider for the voltage to the GUI, and an indicator for the resulting heater power.

Implement a calc record that simulates the water temperature T, processing once per
second. Each time the calc record is processed, it should calculate the “new” water
temperature T(n) based on the “previous” water temperature T(n-1). Example:

T(n) = T(n-1) + [TR-T(n-1)]× KI + PH × cV

In here, the tank isolation constant would better be named “tank wall heat conductivity”.
Extend the EDM screen and add a StripTool configuration so that you can exercise the
database. In essence, the water temperature should increase when the heater is “on”, and
approach room temperature when the heater is “off”.

Example EDM User Interface

(already including the ‘broken sensor’ simulation from a later exercise)

In the preceding example, the parameters KI and cV may be chosen to simulate anything
from a big water tank with excellent isolation down to a 1 oz paper cup. The initial
suggestions were such that you can observe changes in water temperature on a reasonable
time scale. In the example shown below, it takes the water a few minutes to cool from
50ºC down to the room temperature of 25ºC, and one can heat it back up in a minute:

Example StripTool Graph

Change the values temporarily to verify that you can simulate a system that heats
‘quicker’ or has better thermal isolation.

Exercise 2: Heater Controller

Water

Tank

Controller

Room

Temperature

TR

Heater

Voltage

VH

Water

Temperature

T
Setpoint

TS

Error

E

The goal is to add computer control to the water heater simulation. Create a new database
“control.db”, meant to run together with the previous “tank.db”, that contains an analog
input record for entry of the
• Setpoint Water Temperature TS
• Control Parameters (see below)

Add calc records that determine the temperature error E(n) =Ts-T(n) and generate an
appropriate heater voltage. One commonly used generic control algorithm is the “PID”
controller, which has proportional, integral and differential portions. Based on the current
error E(n), it calculates a new output O(n) as follows, considering previous errors E(n-1),
E(n-2), …:

O(n) = KP × E(n) + KI × ΣiE (i) dt + KD × [E(n)-E(n-1)]/dt
Some notes, including a simple PID introduction:
• dT, the time step, can be “1 second”.

In practice, the differential constant KD is often set to 0, because it is quite difficult to
adjust. You can ignore the whole differential term of the PID equation. So we get:

O(n) = KP × E(n) + KI × ΣiE (i)
• Assume our error is E(n)>0, meaning the water is too cold. Using a heater voltage of

KP × E(n) will turn the heater on whenever the temperature is too cold. If we’re way
below the setpoint, we’ll add a lot of heat. When we’re close, we’ll add a little heat.
That’s the proportional or P part of the PID.

• Unfortunately, that leaves us a little short of the goal. In case we reached the setpoint,
the error is of course zero, hence the heater turns off, and the temperature drops. This
again results in a small error and thus a little heat, but not enough to reach the
setpoint.
A small, constant amount of heat is required to keep the setpoint. This could be added
as a manual offset:

 O(n) = KP × E(n) + Offset,
but then of course somebody has to tweak that manual offset to be ‘correct’…

• The integral part of the PID controller, KI × ΣiE (i) dT, is also known as automated
offset. Instead of manually adjusting the offset for each given setpoint, the controller
determines the offset by accumulating the small errors until they vanish.

• When using the integral part, it is useful to limit the integral value so that it does not
grow out of bounds.

• Assert that the heater voltage stays within 0…110V!
• In the previous exercise, we manually adjusted the heater voltage. Now the output of

the PID is supposed to set the heater voltage. Especially for testing, it is nice to be
able to switch back and forth between “manual” and “automated” operation.
One solution is to use an analog output record, DOL field set to read the output of
your PID. The OMSL field then allows you to switch from “closed_loop” (DOL is
used) to “supervisory” (operator interface can adjust value).

• We have only “heating” and no “cooling”. When experimenting, your tank
temperature might soon hit 100ºC and you would have to wait until it cools down to
room temperature. Remember that you can trick the simulation by simply setting the
tank temperature to 0ºC via a “caput” or a “message button” on your EDM screen.

Provide a user interface to the “control.db” records. The following example somewhat
resembles the traditional look of hardware PID control boxes: Setpoint and readback
shown in parallel, output of PID reflected below.

 Perform some tuning of the KP and KI parameters.

In the above example, the parameters where adjusted such that when modifying the
setpoint, the heater initially goes to 0 or 110V (saturation), allowing the water
temperature to quickly fall or rise. When the water temperature is getting close to the
setpoint, the heater is regulated such that the setpoint is reached.

In the following example, the parameters KP and KI were increased. The water
temperature “overshoots” the setpoint and more violent adjustments of the heater follow,
though in the end the setpoint is reached more quickly:

In the last example, the chosen parameters are too big. The water temperature oscillates
around the setpoint, but never reaches it:

Exercise 3: Additional Ideas
• Add a “noise” record that adds to the measured temperature and simulates a less-than-

perfect measurement.
• Simulate a “broken sensor”. In reality, the temperature sensor for the tank could fail,

often because of an open connection. Many A/D boards and well-written drivers
would recognize this and put the associated analog input record in e.g.
READ/INVALID alarm. All the records linked to this input record should use “MS”
(maximize severity) links so that they, too, turn invalid.
Simulate this situation: add a button to the user interface for selecting “broken
sensor”. Depending on the setting of the button, you somehow fake a broken
connection by e.g. switching from the simulated tank temperature to a constant ai
record with HIHI/HSV settings that result in an INVALID status/severity.

• Add SNL code which determines the time from a changed setpoint until the water
temperature reaches the new setpoint.

• Add calculated EDM fields that display the temperatures in Fahrenheit.
• Consider alarm handler configuration: What possible alarms are there? Add a

configuration for ALH and run it.

