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The Theory of Rep-Rate Pattern Generation in the SNS Timing System 
 

E. Bjorklund 
 

Abstract 
In this Tech Report, we discuss the theoretical basis behind the algorithms that compute 
the rep-rate patterns used in the SNS timing system.  Particular attention is given to the 
computational complexity of the algorithms and the quality of the patterns that they 
produce. A simple and efficient algorithm is presented that solves the general problem of 
distributing n pulses over m “timing slots” in the most even way possible, even though  n 
may not necessarily be an even divisor of m.  We next consider the problem of 
maintaining pattern evenness when constraints are introduced into the system that limit 
which timing slots (or “cycles”) are available for assignment. Algorithms are presented 
for both the “ideally constrained” case (in which an ideal pulse distribution can be 
mapped into the constrained list), and the non-ideally constrained case (in which it can 
not). 
 

 
1 Introduction 
Some components of the SNS accelerator, such as the high-voltage power supplies, prefer 
to run at repetition rates that are as evenly distributed over time as possible.  Other 
components, such as the diagnostic “NADs”, are not as sensitive to the evenness of their 
timing pulses, but do require a minimum separation between pulses that could be violated 
if the pattern were too uneven.  The strategy of the SNS timing system is to distribute the 
timing patterns as evenly as possible over the 10-second (600 pulse) super-cycle. 
 
The problem is trivial, of course, when the repetition rate (n) evenly divides 600.  It is 
easy to see, for example, what the pattern should be for n=100 (10.0 Hz.).  The optimal 
pattern is not so obvious, however, when n=87 (8.7 Hz.).  The problem is further 
complicated by system dependencies and constraints (e.g. Gate A may only occur on the 
same cycle as Gate B, but must not be coincident with Gate C).  These constraints will 
limit the number of timing slots on which a gate may legally occur.  Algorithms for three 
cases are discussed in this tech-note: 
 
1) The simple, or “unconstrained” case, in which a gate may legally occur in any slot.  

An efficient (linear time) algorithm is presented which can distribute any n pulses 
over m slots (n<m) as evenly as possible. 

2) The “ideally constrained” case, in which not all of the available slots are “legal”, 
however a simple rotation of the ideal pattern produced in case 1 will fit within the 
slots that are legal.  An O(m2) algorithm is presented for this case where m is the 
number of slots in the pattern. 

3) The “non-ideally constrained” case, in which the ideal pattern must be permuted or 
“deformed” in order to fit the legal slots.  Several heuristic algorithms are presented 
which range in complexity from roughly O(m) to O(m5). 

 
The result of each of these algorithms will be a “gate bitmap”, m bits long, indicating for 
which machine cycles the gate is enabled, and for which cycles it is not enabled.  The 
bitmap represents an interval of time (in the SNS case, 10 seconds) and is repeated 
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continuously.  We are not concerned in this report with the details of scheduling a gate 
within the timeline of a given cycle (i.e. when does it come on, for how long, etc.). 
 
 
2 The Unconstrained Case 
Assume that the bitmap is initially filled with 0’s (gate off), and that we wish to evenly 
distribute n 1’s (gate on) throughout it.  Let us further assume, without loss of generality, 
that 2mn ≤  where m is the number of slots in the bitmap (super-cycle size)1.  For 
illustration, let us take the example of distributing five pulses over thirteen cycles as 
evenly as possible.  Notice that at the start, we have two optimally distributed strings – 
one string of all 0’s and another string of all 1’s. 
 00000000 11111 
 
We start by simply dividing the five 1’s into the eight 0’s.  This will put a 1 after every 0, 
with three 0’s left over. 
 01  01  01  01  01 000 
 
Once again, we can think of this as two optimally distributed strings.  One strings is ten 
bits long and contains five “01” pairs (an optimal distribution of five pulses over ten 
slots).  The second string contains three 0’s.  If we now distribute the three 0’s over the 
five “01” pairs, we get three “010” triples with two “01” pairs left over. 
 010  010  010   01  01 
 
We still have two optimally distributed strings.  “010010010” is an optimal distribution 
of three pulses over nine slots and “0101” is an optimal distribution of two pulses over 
four slots.  We now repeat the process, dividing the two “01” strings into the three “010” 
strings.  This gives us two five-bit strings (“01001”) with one three-bit string (“010”) as a 
remainder. 
 01001  01001 010 
 
We can stop the process when the remainder reaches one or zero.  Our final pattern, 
therefore, is: 
 0100101001010 
 
which is as evenly as we can distribute five pulses over thirteen slots. 
 
It might be argued that the string would be more optimally distributed if we put the final 
remainder pattern (“010”) between the two “01001” patterns (giving “0100101001001”) 
instead of just tacking it on at the end.  The net result, however, is just a rotation of the 
first pattern.  If the pattern is to be repeated ad nauseam by the timing system, then there 
is no real advantage (other than aesthetic) to be gained by the rotation. 
 
Now that we know the “optimal pattern”, we would like a method for efficiently 
computing it.  By examining the final string in the above example, we discover that it has 
                                                 
1 Note that if n>m/2, the problem can be turned around by starting with all 1’s and distributing a pattern of 
m−n 0’s. 
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a recursive structure.  The final, or top-level, string is composed of two strings from the 
previous level, plus a remainder from the level before that.  This structure is shown 
graphically below: 

 
Level 3: 0  1  0  0  1  0  1  0  0  1  0  1  0

 2  2  1 
 

Level 2: 0  1  0  0  1
 1  0 

 
Level 1: 0  1  0 

 0  -1 
 

Level 0: 0  1 
 -1  -2 

Figure 1 

 
In general, a string at level l  will be composed of one or more strings at level 1−l , and 
at most one string at level 2−l .  This implies that the string could be computed by a 
recursive procedure such as the following: 
 

void function build_string (int level) 
{ 
    if (level == -1) 
        append a “0” to the end of the bitmap; 
 
    else if (level == -2) 
        append a “1” to the end of the bitmap; 
 
    else { 
        for (i=0; i < count[level]; i++) 
            build_string (level-1); 
        if (remainder[level] != 0) 
            build_string (level-2); 
    }/*end else*/ 
} 

Figure 2 

 
In the above algorithm (and in figure 1), the levels were chosen so that recursion ends 
when the level number gets below zero.  Level “−1” implies that a 0 should be inserted in 
the string.  Level “−2” implies that a 1 should be inserted in the string.  The “count” 
array tells us how many level 1−l  strings make up a level l  string.  The “remainder” 
array is used to tell us if the level l string contains a level 2−l  string.  To see how we 
obtain the values for the “count” and “remainder” arrays, let us go back and look again 
at how the strings were constructed. 
 
The level-zero string (“01”) was constructed by dividing eight 0’s by five 1’s.  8/5 = 1 r 
3, so we construct a level-zero string by appending one level “−2” string (“1”) to one 
level “−1” string (“0”).  Therefore, count[1] should be one (since there is only one 
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level-zero string in the level-one string).  We use the remainder array both to keep track 
of the remainder of the previous division (it will become the denominator of the next 
division), and to determine how many levels deep we need to go.  The process stops 
either when the remainder is zero (we have achieved a completely even distribution) or 
when the remainder is one (we have reached the end of the remainder series).  We should 
therefore make remainder[0]=5 (the original dividend) and remainder[1]=3 (the 
remainder  
of  8/5). 
 
The level-one string (“010”) is constructed by dividing the three remaining level “−1” 
strings (0’s) into the five level-zero strings.  5/3 = 1 r 2, so we have three level-one 
strings with two level-zero strings left over.  Therefore count[1]=1, remainder[1]=3 
(from the previous step), and remainder[2]=2.  In similar fashion, the level-two string 
(“01001”) is constructed by dividing the two level-zero strings into the three level-one 
strings.  3/2 = 1 r 1, so count[2]=1 and remainder[3]=1.  Since there is now only one 
level-one string to distribute between two level-two strings, we can stop with 
count[3]=2 and remainder[3]=1.  This process is shown graphically in figure 3. 
 

     Remainder Count
Level -1: 00000000 11111    
Level  0: 01  01  01  01  01 0  0  0 8/5 = 1r3 5 1 
Level  1: 010  010  010 01  01 5/3 = 1r2 3 1 
Level  2: 01001  01001 010 3/2 = 1r1 2 1 
Level  3: 0100101001010  1 2 

Figure 3 

The complete bitmap calculation algorithm is show below in figure 4. 
 

void function compute_bitmap (int num_slots, int num_pulses) 
{ 
   /*--------------------- 
    * First, compute the count and remainder arrays 
    */ 
    divisor = num_slots – num_pulses; 
    remainder[0] = num_pulses; 
    level = 0; 
 
    do { 
        count[level] = divisor / remainder[level]; 
        remainder[level+1] = mod(divisor, remainder[level]); 
        divisor = remainder[level]; 
        level = level + 1; 
    while (remainder[level] > 1); 
 
    count[level] = divisor; 
 
   /*--------------------- 
    * Now build the bitmap string 
    */ 
    build_string (level); 
} 

Figure 4 

Note that because of our assumption that the number of pulses is not greater than half the 
number of slots, the values in the count array will always be greater than or equal to one. 
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Although it may not be obvious on casual inspection, the algorithm in figure 4 can be 
computed in linear time, as shown by the following theorem: 
 
Theorem: 
The compute_bitmap function shown in figure 4 is computable in O(m) time, where m is 
the number of slots in the pattern (the super-cycle size). 
 
Proof of Theorem: 
Examining the function in figure 4 reveals two questions we need to answer in order to 
determine the computational complexity.  These are: 1) How many times do we iterate 
through the loop that populates the count and remainder arrays? and 2) How many 
times do we call the recursive build_string function?  To answer both these questions, 
we must first determine what the maximum depth of recursion will be. 
 
Let: 
 m = The number of slots in the bitmap (the super-cycle size) 
 p = The number of 1’s in the bitmap 
 q = The number of 0’s in the bitmap 
 l  = The value of level at the end of the count and remainder computation. 
 
Note that m = p + q.  As before, we assume that qp ≤ . 
 
It is easy to show that the best-case time for the algorithm is O(m).  At the very least, we 
must go through the initial loop (the one that computes the count and remainder array 
values) one time.  This implies that the minimum value for l  is 1.  We must also call the 
build_string function at least once for each bit in the bitmap.  Consequently, there 
must be at least m calls to the build_string function.  Since the minimum value for l  is 
1, however, this implies that there must be at least two additional “overhead” calls to 
build_string before we can reach the –1 and –2 values of l  that actually write the bits 
to the bitmap.  This means that build_string must be called at least m+2 times. 
 
The maximum value for l  will determine the maximum depth of recursion for the 
build_string function.  It also determines the maximum number of times you execute 
the count and remainder construction loop – which determines the amount of space you 
need to allocate for the count and remainder arrays.  Clearly, this would be a useful 
value to have. 
 
From figures 1 and 3, we see that the maximum value of l  is determined by the length of 
the remainder series generated by the values of  p and q.  Since the longest remainder 
series are generated by starting with two consecutive Fibonacci numbers, it follows that 
the maximum value of l  will come when m, q, and p are three consecutive Fibonacci 
numbers such that m = q + p. 
 
We have already seen in the case where m=13, q=8, and p=5, that l =3.  If we move up 
the Fibonacci sequence and make m=21, q=13, and p=8, we observe that l  will be 4.  In 
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fact, it is fairly easy to show that for any 5≥m  such that m=F(k), where F(k) is the kth 
Fibonacci number: 
 ( ) 41 −= − mFl  
 4−= k  (1) 
or 
 ( )4+= lFm  (2) 
 
If you prefer not to count Fibonacci numbers in order to determine how big your arrays 
should be, Knuth [1] has given the following analytical solution for F(i): 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

5

i

iF τ   (Rounded to the nearest integer) (3) 

where 

 
2

51+
=τ   (the Golden Ratio) 

 
The maximum l  for any m can therefore be determined by: 
 ( ) 45log −= mτl  (4) 
 
and the size of the count and remainder arrays (since the indexing starts at 0) is given by: 
 ( ) 35log1 −=+ mτl  (5) 
 
We observe from (4) that m<l , so we conclude that the algorithm’s running time is 
dominated by calls to the build_string function and not by the computation of the 
count and remainder arrays. 
 
We know that there are exactly m “useful” calls to build_string (calls that actually 
produce a 0 or a 1). We now need to know how many “overhead” calls there are (calls 
where level is non-negative). 
 
We know from figure 4, that there is exactly one call to build_string at level l .  We 
also know that the greatest number of “overhead” calls will occur at the maximum value 
for l , which occurs when m, q, and p are consecutive Fibonacci numbers.  We therefore 
know that for 5≥m , the count and remainder loop will terminate after a division of 3 
by 2 produces a remainder of 1 in remainder[ l ].  From this we know that count[ l ] is 
2, which means there are exactly two calls to build_string at level l −1.  We also know 
that at levels below l −1, the result of the division will always be 1, and that there will 
always be a remainder > 1.  This means that for l<≤ k0 , each call to build_string at 
level k will call build_string(k−1) exactly once and build_string(k−2) exactly once.  
It follows then that for k < l −1, the total number of calls to build_string at level k is 
equal to the total number of calls to build_string at level k+1 plus the total number of 
calls to build_string at level k+2. 
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If we define the function N(k) to be the number of calls to build_string at level k, we 
get the following series: 
 ( ) 1=lN  
 ( ) 21 =−lN  
 ( ) ( ) ( )21 +++= kNkNkN    for k < l −1 (6) 
 
What this is, in fact, is another Fibonacci sequence which increases as k decreases.  Thus, 
N(k) can be written as: 
 ( ) ( )2+−= kFkN l    for   l≤≤ k0  (7) 
 
The total number of overhead calls to build_string then, is just the sum of all the 
N(k)’s from 0 to l  (the “overhead levels”).  
 
Let t be the total number of calls (“overhead” plus “useful”) to build_string.  We can 
now write: 

 ( )∑
=

+=
l

0k

kNmt  

 ( )∑
+

=

+=
2

2

l

i

iFm  

 ( ) ( )1
2

1
FiFm

i
−⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

+

=

l

 

 ( ) 1
2

1
−⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

+

=

l

i
iFm  (8) 

 
It can be shown by induction that: 

 ( ) ( ) 12
1

−+=∑
=

nFiF
n

i
 (9) 

 
Which means that we can re-write (8) as: 
 ( ) 24 −++= lFmt  (10) 
 
We know from equation (2), however, that ( ) mF =+ 4l .  Therefore, the worst-case total 
number of calls to build_string is given by: 
 ( )12 −= mt  (11) 
 
We see from (5) that the size of the count and remainder arrays (and therefore the 
amount of work required to compute them) is bounded by ( ) 35log −mτ .  We also 
see from (11) that the number of calls to build_string is bounded by 2(m−1).  We 
therefore conclude that the compute_bitmap function can be computed in O(m) 
time. Q.E.D. 
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3 The Ideally Constrained Case 
Sometimes it is not possible to put a pulse exactly where the ideal distribution algorithm 
says that it should go.  There will be various system constraints and dependencies that 
will dictate which pulses a given timing gate may or may not occur on.  We can still 
preserve our ideal pattern, however, if we can discover a way to rotate the pattern such 
that it will conform to all the system constraints. 
 
Let us assume that we can produce a list of all the slots on which our gate may legally 
occur.  Let us further assume that if s is the number of slots in the legal list, and n is the 
number of pulses we wish to set, then s > n.  If ns ≤ , then the system is “over-
constrained”.  We can deal with an over-constrained system in a number of ways.  
Typically we just reduce the number of pulses from n to s and use the list of legal slots to 
set the bitmap. 
 
As an example of a system that is not over-constrained, suppose we have three pulses to 
distribute over eight slots, and that there are only four legal slots (0, 1, 3, and 6) on which 
these pulses may occur.  The “ideal pattern” algorithm from the previous section would 
want to put the three pulses in slots 1, 4, and 7.  The situation is illustrated below in 
figure 5. 
 

0 1 2 3 4 5 6 7  

0 1 0 0 1 0 0 1 “ideal” pattern
1 1 0 1 0 0 1 0 “legal” pattern

Figure 5 

 
We define the “forward distance”, d(i,j), between two slots, i and j, to be the distance you 
must travel in a forward direction (possibly wrapping around to the first slot) to get from 
slot i to slot j.  For example, if there are eight slots in the bitmap, then: 
 d(5,5) = 0 
 d(5,6) = 1 
 d(6,5) = 7 
 
The forward distance function is computed by: 
 ( ) ( ) mijjid mod, −=  (12) 
 
Note that this requires a definition of the “mod” function that always produces positive 
results – even when the argument is negative, i.e: 
 ( ) ( ) mxmmx modmod −=−  (13) 
 
Let I  be the array of slot numbers that contain pulses in the ideal pattern.  Let L be the 
array of legal slot numbers for this gate.  In our current example: 
 I = (1, 4, 7) 
 L = (0, 1, 3, 6) 
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We can now define the “forward distance matrix”, D, to be an ns ×  matrix such that: 
 ( )jkkj LIdD ,, =  (14) 
 
Figure 6 shows the forward distance matrix for our current example. 
 

 1 4 7  

 7 4 1 0 

D = 0 5 2 1 

 2 7 4 3 

 5 2 7 6 

Figure 6 

 
The forward distance matrix gives the forward distance between every pulse in the ideal 
array (columns) and every pulse in the legal array (rows).  Note that no row or column in 
D may contain the same number more than once.  This is convenient, since it allows us to 
treat the rows and columns as sets. 
 
Let kC  be the set of values in the kth column of D.  The elements of kC  represent the 
forward distances between the kth bit in the ideal pattern (I ) and every bit in the pattern 
of legal slots (L).  Let R be the set intersection of all the kC  sets. 

 I
1

0

−

=

=
n

k
kCR  (15) 

 
It follows that there exists a rotation of the ideal pattern which maps directly into the 
legal pattern if and only if R is not empty.  Furthermore, if R is not empty, then the 
elements of R are the amounts by which the ideal pattern can be rotated to fit the legal 
pattern.  In our current example, R = (2, 7).  So we can rotate the ideal pattern by either 2 
slots or 7 slots and it will fit the legal pattern. 
 
Since set manipulation is not a feature of most programming languages, another useful 
way to solve the problem is to count how many times each number from 0 to m−1 
appears in D, and then find the number which occurs the most times.  If any number 
occurs n times in D, then that number will produce a rotation which will fit the legal 
pattern.  Note that since no number may appear more than once in any column of D, and 
since n < s, it follows that n is the maximum number of times that any number may 
appear in D.  Figure 7 shows the “forward distance frequency count” array for our current 
example.  Note that the values 2 and 7 both occur with frequency 3, meaning that a 
rotation of the ideal pattern by either 2 or 7 slots will completely map it into the legal 
pattern. 
 

Value = 0 1 2 3 4 5 6 7
Frequency = 1 1 3 0 2 5 0 3

Figure 7 
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This frequency count array, and its maximum, will prove useful when we consider the 
non-ideally constrained case in the next section. 
 
The complexity analysis of the ideally-constrained case is fairly straight forward.  
Computing the ideal pattern requires O(m) steps.  Computing the D matrix requires O(ns) 
steps.  The set intersection operation is at most O(ns), and determining the maximum 
number of times any number appears in D is also O(ns).  In the worst case the product, ns, 
is bounded by m2.  So the worst case computation time for the ideally-constrained case is 
O(m2). 
 
It might be noted that the above analysis does not include the time to compute the 
constraint pattern (L).  The short answer is that the constraint pattern could have come 
from anywhere and therefore its generation is outside the scope of this paper.  Typically, 
the constraint pattern either is, or is derived from, the rep-rate pattern of another gate on 
which this gate depends.  If this is the case, the cost of the constraint pattern can be 
ascribed to the cost of computing the antecedent gate and can again be ignored for the 
purposes of this paper. 
 
 
4 The Non-Ideally Constrained Case 
Suppose that there is no rotation which will completely map the ideal pattern into the 
legal pattern.  Figure 8 is an example of one such situation: 
 

0 1 2 3 4 5 6 7  

0 1 0 0 1 0 0 1 “ideal” pattern
0 1 0 1 1 1 0 0 “legal” pattern

Figure 8 

 
In this case we would like to find a “deformed ideal” pattern, P, such that LP ⊂ ,   |P|=n, 
and the pulse distribution of P is as even as possible.  There are several ways to 
accomplish this, with the tradeoff typically being between computational complexity and 
pattern quality. 
 
We will now explore several techniques for handling the non-ideally constrained case.  
The system designer can “tune” the performance of the timing system by either choosing 
one of these techniques or inventing another one. 
 
4.1 Brute Force 
“Brute Force” is the only currently known method that will guarantee the most evenly 
distributed pattern.  The technique is simple: 

1) Select all possible combinations of n slots from the s elements of L. 
2) Choose the one with the most evenly distributed pattern. 

 
Before we start coding, however, it would be instructive to look at the computation time 
required for this method. 
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We will start with the second step – choosing the most even pattern.  In [2] we developed 
the general theory of rep-rate pattern “Ugliness”.  If we define )(ijδ  to be the forward 
distance between pulse i and the jth pulse after i in the pattern P, i.e.: 
 ( ) ( )njiij PPdi mod)(, +=δ  (16) 
 
then the “Ugliness” of pattern P, as given by [2] is: 

 ( ) ( )∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

2

1

1

0

22 n

j

n

i
j n

jmi
n

PUgliness δ  (17) 

 
This gives us a metric for comparing the patterns that is computable in O(n2) time, where 
n is the number of pulses in pattern P and m is the total size of the super-cycle. 
 
Now we need to address the first step – extracting all the possible n-element subsets from 
L.  The number of unique n-element subsets that can be extracted from a set of size s is 
given by the binomial coefficient: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n
s

 (18) 

 
where s is the number of pulses in the legal pattern, L, and n is the rep-rate of the desired 
pattern.  So the total complexity of the “Brute Force” method is given by: 

 2n
n
s

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (19) 

 
To get a feeling for the worst case time, we first recall that the binomial coefficient can 
be expressed as: 

 
!)!(

!
nns

s
n
s

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 (20) 

 
We also note that the largest value of the binomial coefficient occurs when n is exactly 
one half the size of s, e.g: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2s

s
 (21) 

 
Referring back to (20), we have: 

 2)!2(
!

)!2()!2(
!

2 s
s

sss
s

s
s

=
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (22) 
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To see how big that is in “real” numbers, we can use Stirling’s approximation [3], which 
states: 

 
s

e
sss ⎟

⎠
⎞

⎜
⎝
⎛≈ π2!  (23) 

 
Substituting (23) back into (22) gives us: 

 222
222

2

)!2(
!

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

≈
s

s

e
ss

e
ss

s
s

π

π
 

 s

s

e
ss
e
ss

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

≈

22
2

2

π

π
 

 
( )

( )ss
s

s
s

e
ss

e
s

22
2
1 π

≈  

 
s

s

π2
2
1

2
≈  

 
s

s

π2
2 1+

≈  (24) 

From (24), we see that the worst case time for the “Brute Force” method is O(2s+1), where 
s is the number of pulses in the legal pattern (L).  Since s could be as large as 600 in the 
SNS timing system, we conclude that the “Brute Force” method may not be a practical 
choice.2 
 
 
4.2 Redistribution 
We move now from the most expensive algorithm with the best pulse distributions to the 
least expensive algorithm with (potentially) the worst pulse distributions. 

                                                 
2 The situation is not quite as bad as it appears.  When s=600, we have the “unconstrained” case, which can 
be solved in linear time.  At s=599, s=598, etc. it is unlikely that you will encounter a problem that can’t be 
solved by a simple pattern rotation (the “ideally constrained” case).  However, even s=300 yields a 
sufficiently large value to discourage us from considering the Brute Force method any further. 
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Recall that the “ideal” pattern (I ) was produced by using the compute_bitmap algorithm 
from section 2 to distribute the n desired pulses over the m slots in the super-cycle.  The 
idea behind Redistribution is to use compute_bitmap to compute a new “ideal” pattern 
(Î ) by redistributing the n desired pulses over s slots, and then projecting the new pattern 
onto the set of legal pulses (L). 
 
In the example shown above in figure 8, I = (1, 4, 7) and L = (1, 3, 4, 5).  I is the ideal 
distribution of  n=3 pulses over m=8 slots.  If, instead, we were to ideally distribute 3 
pulses over 4 slots (the size of L), we would get: 
 Î = (0, 1, 2), or the string  “1110”. 
 
Projecting Î onto L selects the first three elements of L, giving us: 
 P = (1, 3, 4), or the string “01011000”. 
 
This is not the best distribution possible, but neither is it the worst.  And it is cheap.  Î can 
be computed in O(s) time, and the projection onto L can also be accomplished in O(s) 
time.  Therefore we say that the redistribution method can be computed worst case in 
O(m) time.3 
 
A few additional points about the redistribution method are worth making. 
 
1) Redistribution will always produce the most even pattern possible as long as the 

constraint pattern is perfectly even (i.e. Ugliness(L) = 0).  As the ugliness of the 
constraint pattern increases, the ugliness of the projection increases proportionally. 

2) Rotations of the redistribution pattern can produce either better or worse projection 
patterns.  One could consider modifying the redistribution method such that we take 
the projection of all possible rotations and choose the one with the best pattern.  This 
increases the computational complexity to O(n2s) as there are s−1 rotations and the 
ugliness metric is O(n2).  Since n is bounded by s and s is bounded by m, this gives us 
a worst-case time of O(m3).  If we’re going to work that hard however, there are other 
methods that will give us better patterns. 

                                                 
3 For the rest of this report, we will ignore the fact that it took us O(m2) time (worst case) to discover that 
the problem was “non-ideally constrained” in the first place – and in need of another solution like 
“redistribution”. 
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4.3 Constraint Pattern Pruning 
The next cheapest heuristic is called “Constraint Pattern Pruning”.  This is the first of a 
series of “pruning” heuristics that use the individual ugliness metric from [2] to search for 
better “deformed ideal” patterns.4  To summarize from [2], the individual ugliness, u(i) of 
a pulse, i, in pattern, P, is given by:  
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also where n is the rep-rate of the pattern and )(ijδ  is the forward distance to the jth 
neighbor of pulse i (as defined above in equation (16)). 
 
The idea behind constraint pattern pruning is that you have a “legal” pulse set, L, of size s 
and an “ideal” pulse set, I, of size n < s.  We will ignore I because we know it is 
unobtainable and concentrate instead on pruning L down to size n.  The basic algorithm 
is: 

1) Use equation (25) to identify the ugliest pulse in L.  Remove that pulse. 
2) Repeat step 1 s − n times. 

 
Returning to our example in figure 8, in which L = (1, 3, 4, 5), if we apply equation (25) 
to each of the elements of L we get: 
 u(0)  = 2/3 =  6666.0  
 u(1)  = 42/3 =  6666.4  
 u(2)  = 62/9 =  2222.6  
 u(3)  = 15/9 =  5555.1  
 
The ugliest pulse in L is therefore L2 = 4.  Eliminating the pulse in slot 4 gives us the 
pattern “01010100”, which is as even as we can distribute three pulses over the constraint 
pattern L. 
 
The individual ugliness of a single pulse in L can be computed in O(s) time.  Therefore, 
the ugliest pulse in L can be found in O(s2) time.  Trimming the legal pattern down to n 
pulses requires s − n iterations, so our worst-case compute time for constraint pattern 
pruning is bounded by O(m3). 
 
Constraint pattern pruning produces its best patterns (and works most efficiently) when  
s − n is small.  When s is significantly larger than n, the algorithm is susceptible to local 
minima.  In the following example, m = 60,  n = 8, s = 15, and L = (3, 7, 11, 15, 19, 23, 
27, 31, 35, 39, 43, 47, 51, 55, 59).  Figure 9 shows how the constraint pattern pruning 

                                                 
4 These algorithms could also be called “Survivor” methods, since they work by voting the ugliest pulse out 
of the pattern. 
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method reduces L from 15 pulses to 8 pulses.  The X characters show which pulse was 
eliminated to produce the pattern at each step. 
 
s = 15 ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1 
s = 14 oooXooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1ooo1 
s = 13 ooooooo1ooo1ooo1ooo1ooo1ooo1oooXooo1ooo1ooo1ooo1ooo1ooo1ooo1 
s = 12 ooooooo1ooo1ooo1ooo1ooo1ooo1ooooooo1ooo1ooo1oooXooo1ooo1ooo1 
s = 11 ooooooo1ooo1oooXooo1ooo1ooo1ooooooo1ooo1ooo1ooooooo1ooo1ooo1 
s = 10 ooooooo1ooo1ooooooo1ooo1ooo1ooooooo1oooXooo1ooooooo1ooo1ooo1 
s = 9 ooooooo1ooo1oooooooXooo1ooo1ooooooo1ooooooo1ooooooo1ooo1ooo1 
s = 8 ooooooo1ooo1ooooooooooo1ooo1ooooooo1ooooooo1ooooooo1oooXooo1 
final: ooooooo1ooo1ooooooooooo1ooo1ooooooo1ooooooo1ooooooo1ooooooo1 

Figure 9 

Because L starts out as a perfectly even pattern in this example, we can use redistribution 
to determine that the most even distribution of 8 pulses over L would be something like: 
 ooooooo1ooooooo1ooooooo1ooooooo1ooooooo1ooooooo1ooooooo1oooo1 
 
which is not the final pattern arrived at in figure 9.  The algorithm starts out well by 
eliminating, in order, the pulses in slots 3, 31, 47, 15, and 39.  At  s = 10, however, it 
starts to go wrong by choosing to eliminate the pulse in slot 19.  We would have 
preferred it to have choosen either 27 or 55. 
 
The pattern at s = 10 is actually quite interesting in that, from an ugliness point of view, 
the pulses in slots 7, 11, 19, 23, 51, and 59 are all equally good candidates.  Not knowing 
a priori how we wanted the final pattern to look, the algorithm chose the pulse in slot 19 
more or less at random (or more probably because the roundoff error in the calculations 
for slot 19 was slightly higher than the roundoff error for the other pulses). 
 
This illustrates the need to give our heuristics more of a clue about where we want them 
to go. 
 
 
4.4 Add Least Ugly Method 
The “add least ugly” method is almost the opposite of “constraint pattern pruning”.  
Instead of deleting the most offensive pulses from a larger pattern, it seeks to add the 
least egregious pulses to a smaller pattern.  It also attempts  to incorporate a better picture 
of what the desired result should look like.  The algorithm is: 

1) Compute the forward distance frequency array as described above in section 3  
(recall that this array counts the frequency of the forward distances between 
pulses in the ideal set (I ) and pulses in the legal set (L) ). 

2) Pick the value, r, with the highest frequency in the forward distance frequency 
array.  Rotate the ideal pattern by r slots giving the “rotated ideal” pattern, I r. 

3) Let ILIP rr =0  be the intersection of I r
 and L.  Note that rP0  has size, 

)(|| 0 rfrequencyPp r == , and satisfies p < n < s.  The elements of rP0  represent 
the maximum number of elements from L that match the “rotated ideal” pattern,   
I r. This forms the starting point from which we will build our final pattern. 
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4) Let rr PLC 00 −=  be the set of pulses in L which are not in rP0 .  rC0  will be the 
initial set of pulses (the “candidate” set) from which we can choose to build up 
the final pattern. 

5) Using the individual ugliness metric given in equation (25), select the pulse in rC0  
that would have the lowest individual ugliness value if it were added to rP0 .  Form 

r
iP 1+  by adding this pulse to r

iP  and form r
iC 1+  by removing this pulse from r

iC . 
6) Repeat step 5 above n − p times. 

 
The initial pattern ( rP0 ) can be constructed in O(s) time. The complexity of the individual 
ugliness metric is O(p).  For each iteration of step 5, we need to compute the individual 
ugliness of s − p pulses (once for each pulse in r

iC )5.  Step 5 is repeated  
n − p times, so the total number of computations is O(s+p(s−p)(n−p)).  Since p, n, and s 
are all bounded by m, the worst-case compute time is O(m3).  
 
Almost… 
 
It turns out that the final pattern ( r

pnP − ) is highly dependent on the rotation pattern  (I r) 

from which we constructed the initial pattern ( rP0 ).  For best results, therefore, we need 
to repeat the algorithm for each possible rotation of I.  This brings the worst-case time up 
to O(m4).  We will talk more about rotations in the next section.  
 
One problem with the “Add Least Ugly” method is that it is sensitive to aliasing.  
Consider the example where m = 45, n = 8, s = 15, L = (2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 
32, 35, 38, 41, 44) and I = (2, 8, 13, 19, 24, 30, 35, 41).  In this case, L is a perfectly 
distributed pattern of 15 pulses over 45 slots.  I is an “ideal”, but not perfectly even, 
distribution of 8 pulses over 45 slots.   For purposes of illustration, we will only consider 
the initial “un-rotated” ideal pattern6.  Figure 10 shows the bitmaps for I, L, and the 
starting pattern, 0

0P .  
 

 L = oo1oo1oo1oo1oo1oo1oo1oo1oo1oo1oo1oo1oo1oo1oo1 
 I = oo1ooooo1oooo1ooooo1oooo1ooooo1oooo1ooooo1ooo 

 
0

0P  = oo1ooooo1oooooooooooooooooooooooooo1ooooo1ooo 

Figure 10 

 

                                                 
5 This is a bit of an oversimplification, since the value of p increases with each iteration of step 5. 
6 It turns out, that for this example, the initial “un-rotated” pattern is the only one we need to consider.  The 
reason will become clearer in the next section. 
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The pulses in 0
0P  are “clustered” at the beginning and the end of the pattern.  This kind of 

clustering will cause the algorithm to either create another cluster in the center, or append 
on to existing clusters.  In the example above, the final pattern produced by the “Add 
Least Ugly” method is: 
 
 oo1ooooo1oo1oo1oo1oo1oooooooooooooo1ooooo1ooo 
 
This is hardly a “shining example” of pattern evenness. 
 
If we modify our algorithm slightly such that step 5 uses the general rather than the 
individual ugliness metric (equation (17)), then we get a much better final pattern: 
 
 oo1ooooo1ooooo1ooooo1ooooo1oo1ooooo1ooooo1ooo 
 
The general ugliness metric, however, is O(p2) whereas the individual ugliness metric is 
only O(p).  This brings our total worst-case compute time for the “Add Least Ugly” 
method up to O(m5), which may be a  bit expensive. 
 
One final observation that we can make from this section is that the individual ugliness 
metric is generally much better at removing pulses from a pattern than it is at adding 
them.  In fact, it has been our observation that the individual ugliness metric is almost as 
effective as the general ugliness metric at removing pulses. 
 
 
4.5 Rotations and Periodicity 
There are some steps we can take to reduce the number of rotations we need to consider.  
First, we claim (without any kind of rigorous proof) that our results will be just as good if 
we only consider those rotations that correspond to the maximum value found in the 
forward distance frequency array.  Second, we can take advantage of any known 
“periodicity” of the I and L patterns. 
 
A good ideal pattern will, by its nature, have a cyclic structure if at all possible.  
Furthermore, the “periodicity” of an ideal pattern can be determined from its 
construction.  To see this, consider how the ideal patterns are made.  Strings at level l  
are constructed by taking one or more strings from level 1−l  and appending zero or one 
string from level 2−l .  In section 2, figure 3, we see an illustration of this process.  First 
we produce a string with five cycles of length two.  Then we produce a string with three 
cycles of length three, then a string with two cycles of length five, and finally a string 
with a single cycle of length 13.  The final string produced in figure 3 is not cyclic, of 
course, but this is not surprising since 13 is a prime number.  The exercise does show, 
however, that by keeping track of the lengths of the strings at each level, we can 
determine the periodicity of the final pattern.  Figure 11 shows how we might modify the 
compute_bitmap function from figure 4 to keep track of the pattern’s periodicity. 
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void function compute_bitmap (int num_slots, int num_pulses) 
{ 
   /*--------------------- 
    * First, compute the count and remainder arrays 
    */ 
    divisor = num_slots – num_pulses; 
    remainder[0] = num_pulses; 
    level = 0; 
    cycleLength = 1; 
    remLength = 1; 
 
    do { 
        count[level] = divisor / remainder[level]; 
        remainder[level+1] = mod(divisor, remainder[level]); 
        divisor = remainder[level]; 
        newLength = (cycleLength * count[level]) + remLength; 
        remLength = cycleLength; 
        cycleLength = newLength; 
        level = level + 1; 
    while (remainder[level] > 1); 
 
    count[level] = divisor; 
    if (remainder[level] > 0) 
        cycleLength = (cycleLength * count[level]) + remLength; 
 
   /*--------------------- 
    * Now build the bitmap string 
    */ 
    build_string (level); 
} 

Figure 11 

If the pattern is cyclic (cycleLength < m), then we can further reduce our workload by 
only considering those “maximum frequency” rotations whose rotation amount is less 
than cycleLength.  Furthermore, if the constraint pattern is also cyclic, then we only 
need to consider rotation amounts less than the minimum of the ideal and legal pattern 
periods. 
 
 
4.6 Deformed Ideal Pattern Methods 
As we have seen in the previous sections, using the ugliness metrics to add or delete 
pulses one at a time can be expensive and can lead you into local minima and aliasing  
traps that might be avoided with a more global perspective.  One way to increase this 
global perspective – along with reducing the number of ugliness evaluations  – is to start 
the heuristic with a “deformed” ideal pattern. 
 
A deformed ideal pattern method has the form: 

1) Compute the forward distance frequency array as described above in section 3. 
2) Pick the value, r, that has the highest frequency (p) and rotate the ideal pattern by 

r slots giving the “rotated ideal” pattern, I r. 
3) Construct the initial pattern, rP0 , by matching up each pulse in I r with the nearest 

corresponding legal pulse in L.  If an ideal pulse does not have an obvious closest 
legal pulse, leave it unassigned. 
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4) If, as a result of step 3, not all the ideal pulses were assigned to legal pulses, use a 
method such as “constraint  pattern pruning” or “add least ugly” to fill in the 
missing pulses. 

5) Repeat steps 2 through 4 for each rotation, r, in the forward distance frequency 
array such that frequency(r) = p, or until the rotation amount exceeds the 
periodicity of either the ideal pattern or the legal pattern. 

 
It is fairly obvious how the “add least ugly” method can be applied to a “deformed ideal” 
pattern.  “Constraint pattern pruning” can also be used if you restrict the candidates for 
pruning to those pulses in L which are not also in r

iP .  As before, “add least ugly” works 
better when you use the general rather than the individual ugliness metric. 
 
The worst-case complexity of the “deformed ideal” methods is basically the same as the 
worst-case complexity of the “constraint pattern pruning” or “add least ugly” methods.  
However, by starting with a deformed pattern (which can be computed in O(s) time), we 
can achieve a considerable reduction in the average-case complexity.  The starting 
deformed pattern, rP0 , is highly dependent on the rotation, so it is important not to skip 
step 5. 
 
 
4.7 Anti-Pattern Pruning 
We have seen in our analysis (and also in our tests) that the “constraint pattern pruning” 
method usually produces better patterns than the “add least ugly with individual ugliness” 
method, and that the “add least ugly with global ugliness” method produces better 
patterns than “constraint pattern pruning”, but at a higher cost.  This is because the 
individual ugliness metric is much better at removing ugly pulses from a pattern than it is 
at adding “desirable” pulses.  One way around this problem is to “add” pulses to a 
deformed ideal pattern by using the individual ugliness metric to “remove” those pulses 
from the “anti-pattern”. 
 
Let rP0  be the initial deformed ideal pattern for rotation I r.  Define the “Anti-Pattern”, 

rP0  to be: 
 
 { }rr PimiP 00 |10 ∉−∈= K  (27) 
 
Because “ugliness” is basically the measurement of the asymmetry of a pattern, it follows 
that any action that reduces the ugliness of a pattern (makes it more symmetrical) will 
also reduce the ugliness of the anti-pattern, and vice versa. 
 
 
The algorithm for the “anti-pattern pruning” method is: 
 

1) Construct an initial deformed ideal pattern, rP0 , for rotation, r, by the method 
described in the previous section. 
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2) Construct the anti-pattern, rP0 , from rP0  using equation (27). 
3) Let rr PLC 00 −=  be the set of candidate pulses to consider for addition to our 

deformed ideal pattern (note that rr PC 00 ⊂ ). 
4) Using rP0  as the pattern, compute the individual ugliness of each pulse in rC0 .  

Select the pulse with the lowest individual ugliness and construct r
iP 1+  by adding 

this pulse to r
iP .  Construct r

iP 1+  by removing this pulse from r
iP , and construct 

r
iC 1+  by removing this pulse from r

iC . 
5) Repeat step 4 n − p times. 
6) Repeat steps 1 through 5 above for each rotation, r, in the forward distance 

frequency array such that frequency(r) = p, or until the rotation amount exceeds 
the periodicity of either the ideal pattern or the legal pattern. 

 
The initial deformed ideal pattern ( rP0 ) can be constructed in O(s) time, and its anti-
pattern ( rP0 ) can be constructed in O(m) time.  The “candidate set” ( rC0 ) is also computed 
in O(s) time, and in fact, can be computed at the same time as rP0 .  The individual 
ugliness metric requires O(m−p) time and must be performed for each of the s − p 
elements of r

iC  in order to select the next pulse to add to r
iP 1+ .   This process must be 

repeated n − p times to build up the final pattern.  The total number of rotations that need 
to be considered is determined by the forward distance frequency array and the 
periodicity of I and L, but is bounded by n.  Each rotation will also require an O(n2) 
ugliness computation in order to select the best final pattern.  The total time for the “anti-
pattern pruning” method is therefore O(nr(s+m+(n−p)(s−p)(m−p) +n2)) where nr is the 
number of rotations considered.  This reduces to a worst-case time bounded by O(m4).  
 
This is comparable to the running time for the “constraint pattern pruning” method using 
deformed ideal patterns.  “Anti-pattern pruning” usually requires slightly more time than 
“constraint pattern pruning”, mainly because the individual ugliness metric requires 
O(m−p) time for “anti-pattern pruning” and O(s) time for “constraint pattern pruning”.  
This would not be true, of course, if s were larger than m − p.  However, it should be 
pointed out that the larger s is, the less likely we are to be inside the non-ideally 
constrained domain in the first place. 
 
 
4.8 Summary of Methods for the Non-Ideally Constrained Case 
In this section, we briefly summarize the non-ideally constrained methods we have 
discussed so far and compare their pattern quality and compute time characteristics.  The 
conclusions we express here are the result of our initial experiments using several “test-
case” problems, and cannot be construed to be an exhaustive analysis.7 
 

                                                 
7 In other words, “Your mileage may vary.” 
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Since the “brute force” method requires more time than the known age of the universe, 
we rule out any further consideration of this method in favor of the more computationally 
tractable heuristic methods. 
 
Our experience so far has shown that the best quality patterns are generally produced by 
the “add least ugly” method operating on a deformed ideal pattern and using the general 
rather than the individual ugliness metric.  This is also our most expensive heuristic with 
a worst-case time of O(m5). 
 
In most of our test cases, “anti-pattern pruning” has produced patterns just as good as 
“add least ugly” and at a worst-case cost of only O(m4). 
 
“Constraint pattern pruning” on deformed ideal patterns is slightly more efficient than 
“anti-pattern pruning”, although it is still O(m4) worst-case.  The pattern quality has been 
noticeably inferior, however. 
 
In general, none of the “non-deformed ideal pattern” methods produce particularly good 
patterns, although “add least ugly” using general ugliness produces quite acceptable 
results. 
 
Of the O(m3) algorithms, “un-deformed add least ugly” produces some of the worst 
patterns, being highly susceptible to aliasing and clustering.  “Un-deformed constraint 
pattern pruning” produced better patterns, but was still susceptible to local minima traps. 
 
“Redistribution” has the interesting property of provably producing the best possible 
patterns – and in O(m) time – as long as the constraint pattern is perfectly even 
(Ugliness(L) = 0).  As the evenness of the constraint pattern deteriorates, however, so 
does the quality of the “redistribution” patterns – like a beautiful image reflected in a fun-
house mirror. 
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