
 SNS-NOTE-CNTRL-100

1

A Metric for Measuring the Evenness of
Timing System Rep-Rate Patterns

E. Bjorklund

Abstract

When computing repetition rate patterns for SNS timing events, it is sometimes useful to
be able to measure the quality of a proposed pattern. The quality of a pattern is
determined primarily by the evenness of its pulse distribution. In this tech-report, we
describe the “Ugliness” function – which measures the degree to which a pattern deviates
from perfect symmetry. An “Individual Ugliness” metric is also developed which allows
us to identify the specific pulse or pulses that are the major contributors to a pattern’s
collective ugliness. The general ugliness function is computable in O(n2) time, where n is
the repetition rate. The individual ugliness function is computable in O(n) time.

Introduction
Computing super-cycle patterns for various repetition rate values is a fairly efficient and
straight-forward process as long as there are no constraints on which cycles are available
for scheduling the pulses (for the details of this process, see [1] and [2]). Once you
introduce constraints into the system (for example, “Gate A may only occur on cycles
that also contain Gate B, but not on cycles that contain Gate C…”) you can quickly run
into scenarios in which computing the most evenly distributed pattern that meets the
given constraints is cost-prohibitive. You then need to resort to heuristic solutions that
can only guarantee “relatively good” patterns. As with most optimization problems, the
heart of a good heuristic lies in having a good, easily computed metric to let you know
whether a proposed solution is better or worse than the other candidates.

The Properties of Ugliness
It is easy to recognize a good pattern when you see one. The trick is to get a computer to
recognize it. For example, if the pattern width (super-cycle length) is 8 and your
repetition rate (number of pulses) is 2, then the pattern:
 10001000
is clearly an optimal distribution. Between every ‘1’ in the pattern, there are three ‘0’s.
Since timing systems repeat their super-cycles ad nauseam, any rotation of the above
pattern is also an optimal distribution. When the rep-rate does not evenly divide the
super-cycle length, or when there are constraints on where you can place the ‘1’s, the
situation becomes less obvious. In the two patterns below:
 01010100 01001100
 Pattern A Pattern B
It is clear that Pattern A is more evenly distributed than Pattern B. We would like our
metric to distinguish between these two patterns as well.

Apart from just measuring evenness, there are some other properties we would like our
metric to have:
• The metric must be invariant under rotations. Since the super-cycle is repeated ad

nauseam, it is not really important where the pattern begins or ends. Therefore, the

 SNS-NOTE-CNTRL-100

2

two patterns:
 01010100 00010101
should have the same value.

• The metric should be efficient to compute. Given the SNS super-cycle length of
600, we would like to restrict the computational complexity to no more than ()2nO .

• The metric should return 0 for a perfectly even pattern. The value should
increase as the symmetry of the pattern decreases. This just makes the metric easier
to use than if we made the other, less convenient, choice of assigning ∞ to a perfectly
even pattern.

The last constraint implies that our metric is actually measuring the lack of symmetry in
our pattern. Since the ancient Greeks equated symmetry with beauty, we call our metric
the “Ugliness” of the pattern.1

Some Methods That Don’t Work (and Why)
Before describing the metric we eventually adopted, it is useful to gain insight into the
problem by exploring some techniques that did not meet our criteria, and the reasons for
their failure. In this section we also develop some of the nomenclature that we will be
using to describe the ugliness function (so you can’t skip over this section – in spite of
the title).

The standard statistical tools for measuring distributions are “Variance” (2σ), and “Mean
Average Deviation” (MAD). Variance is computed as:

 ()∑
=

−==
n

i
i xx

n 1

22 1var σ (1)

where x is the average value:

 ∑
=

=
n

i
ix

n
x

1

1 (2)

The Mean Average Deviation is similar to the variance, but uses absolute value (instead
of squaring) to remove the “signedness” of the deviations:

 ∑
=

−=
n

i
i xx

n
MAD

1

1 (3)

Because of the greater range in the variance (squaring the difference produces larger
values than taking the absolute value does), the “variance” approach usually produces
better results.

One obvious first attempt at measuring the ugliness of a pattern would be to measure
either the variance or MAD of the “forward distances” between the ‘1’s in the pattern.

1 One implication of this is, of course, is that you can only be so beautiful, but there is no limit on your
potential for ugliness.

 SNS-NOTE-CNTRL-100

3

Let ()jid , be the distance, measured in a “forward” direction (i.e. left-to-right), with
wraparound, between the ith and jth elements of the pattern. ()jid , is computed as
follows:
 () () mijjid mod, −= (4)
where m is the length of the pattern (super-cycle) and the “mod” function is defined such
that it always returns a positive value, e.g:
 () () mxmmx modmod −=− (5)

Now define the “Pulse Set” (P) of a pattern to be the ordered set of the index values of
each pulse in the pattern (i.e. “all the ones”). Formally put, we have:
 P = {i | the ith slot in the pattern contains a 1}

For example, if the pattern is:
 01101101
then
 P = (1,2,4,5,7)

Note that the first element of the pattern has index value 0. This convention allows us to
use modular arithmetic in the indices without requiring further alterations to our
definition of the “mod” function. Note also that P is an “ordered” set (this will be
important later on).

Finally, we define ()iδ to be the forward distance between the ith element of P and its
nearest neighbor in the forward direction (with wraparound). ()iδ is therefore computed
by the equation:
 () ()()nii PPdi mod1, +=δ (6)

The “variance” of a rep-rate pattern, can then be expressed as:

 ()()∑
−

=

−=
1

0

21var
n

i
i

n
δδ (7)

where n is the number of ‘1’s in the pattern.

So our previous pattern, 01101101, which is represented by the pulse set, P=(1,2,4,5,7),
generates the δ set, δ =(1,2,1,2,2), from which we compute a pattern variance of 0.24.

At first glance, the variance method appears to have all the characteristics we are looking
for in a good metric. It is invariant over rotations, it is zero for a perfectly symmetrical
pattern, and it is computable in linear time. However, to see how the variance method
fails, consider the pattern:
 01110101
which also has a variance of 0.24, but is clearly less desirable than our first pattern! To
see why this is the case, consider the P and δ sets of the two patterns:
 P1 = (1,2,4,5,7) δ1 = (1,2,1,2,2)
 P2 = (1,2,3,5,7) δ2 = (1,1,2,2,2)

 SNS-NOTE-CNTRL-100

4

Both δ sets contain two 1’s and three 2’s, so the sum and mean are the same. The
variance calculation sums the same terms for both patterns (although in a different order)
and so it arrives at the same value.

The key is to notice that the δ set for the first pattern has a more even distribution of 1’s
and 2’s than the δ set of the second pattern. Clearly, we need to look at more than just
the distances between a pulse and its immediate neighbor. We also need to consider the
distribution of those distances, and the distribution of those distributions, etc. To do this,
we need to look at the relationship between each pulse and every other pulse in the
pattern, which leads to the algorithm we finally adopted as our “Ugliness” metric.

The Ugliness Equation
The algorithm we adopted to measure a pattern’s “Ugliness” is as follows. First take the
variance of the forward distances between adjacent pulses. Then take the variance
between the forward distances of every other pulse, the variance between the forward
distances of every third pulse, etc. The mean value of all these variances is defined to be
the pattern’s “Ugliness”.

We define ()ijδ to be the forward distance between pulse i and the jth pulse after i.
 () ()()njiij PPdi mod, +=δ (8)

An interesting and useful observation on the jδ function is the relation:

 () jmi
n

i
j =∑

−

=

1

0
δ (9)

where m is the size of the entire pattern, and n is the number of pulses (1’s). To
understand the reason for this relationship, consider that when you sum the forward
distances between each pulse and its nearest neighbor in the forward direction ()1δ , you
are, in effect, traversing the entire pattern. When you sum the forward distances between
each pulse and its second nearest neighbor in the forward direction ()2δ , you traverse the
entire pattern twice, etc. A direct application of this relationship is that the mean of a jδ
function can be expressed simply as:

n
jm

j =δ (10)

The mean of the variances of the jδ functions (the “Ugliness”) can then be expressed as:

 ()∑ ∑
−

=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−

1

1

1

0

21
1

1 n

j

n

i
j n

jmi
nn

δ (11)

Equation (11) can be computed in ()2nO time, which fits our criteria for computational
complexity. We can reduce the computation time by roughly one half, however, if we
consider the symmetry between the jδ and jn−δ functions.

 SNS-NOTE-CNTRL-100

5

Let D be an ()1−× nn matrix constructed from P as follows:

 ()
n
jmiD jji −= δ, (12)

For example, given the pattern 01101101, with P = (1,2,4,5,7), then:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−
−

−−−−

=

4.02.02.04.0
6.02.08.04.0
4.02.02.06.0
6.02.02.04.0
4.08.02.06.0

D

Note that the columns of D represent the differences between ()ijδ and jδ . In other
words, the variance of a jδ function is given by the mean of the sum of the squares of the
elements of the jth column of D.

 () ()∑
−

=

=
1

0

2
,

1var
n

i
jij D

n
δ (13)

Also note that the mean of all the ()jδvar functions is the “Ugliness” function specified
by (11).

()∑ ∑
−

=

−

=
⎥
⎦

⎤
⎢
⎣

⎡
−

=
1

1

1

0

2
,

1
1

1 n

j

n

i
jiD

nn
Ugliness (14)

The following theorem will allow us to cut our computation time in half by only
considering the first n/2 columns of D in the computation of equation (14)2.

Theorem:
)(,mod)(, jnnjiji DD −+−=

The “English Translation” of this theorem is that the last column of D is just a rotation
and negation of the first column of D. The penultimate column of D is just a rotation and
negation of the second column of D, etc. This relationship can be seen in the example
above.

2 At this point, the astute (or “nit-picky”) reader will probably have noticed the inconsistency in our
indexing scheme. The row indices of D begin with 0, and the column indices of D begin with 1. This is an
artifact of the definition of D owing to the fact that pulse and slot numbers (i) begin with 0 (so that we can
use modular arithmetic on them) but forward distances (j) begin with 1 (the forward distance between a
pulse and itself is of no interest). We chose to maintain this convention because it makes the following
proof a lot cleaner.

 SNS-NOTE-CNTRL-100

6

Proof of Theorem:
By definition (12):

 () ()
n

mjnnjiD jnjnnji
)(mod)(,mod)(

−
−+= −−+ δ (15)

By definition (8):
 () ()()njnnjinjijn PPdnji mod)(mod)(mod)(,mod)(−+++− =+δ (16)

However, by the properties of modular arithmetic, and the fact that j is always less than n:
 () () () inninjnjinjnnji PPPP === +−++−++ modmod)()(mod)(mod)((17)

Backing up to equation (15), we now manipulate the second term of the subtraction to
get:

 ()
n
jmm

n
mjmn

n
mjn

−=
−

=
− (18)

Substituting (17) and (18) back into (15) gives us:

 () ()
n
jmmPPdD injijnnji +−= +−+ ,mod)(,mod)((19)

Referring back to the definition of d given in (4), and our definition of the “mod”
function given in (5), we can show, using the properties of modular arithmetic, that:
 () ()ijdmjid ,, −= (20)

Substituting (20) back into (19), we get:

 () n
jmmPPdmD njiijnnji +−−= +−+),(mod)(,mod)(

 ()
n
jmij +−= δ

 jiD ,−= Q.E.D.

As a result of the above theorem, we know that the columns in the second half of the D
matrix contain exactly the same numbers as the columns in the first half of the D matrix.
Since the variance calculation squares the column values, the information in the second
half of the D matrix is completely redundant and therefore does not need to be re-
computed.

 SNS-NOTE-CNTRL-100

7

By using only the first n/2 columns of the D matrix, multiplying by 2, factoring out the
averaging, and simplifying, we obtain the following “streamlined” ugliness equation:

 () ()∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

2

1

1

0

21
2

2 n

j

n

i
j n

jmi
nn

Ugliness δ

 ()∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

2

1

1

0

21
2

22
n

j

n

i
j n

jmi
n

n
n

δ

 ()∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

2

1

1

0

22 n

j

n

i
j n

jmi
n

δ (21)

Individual Versus Collective Ugliness
Equation (21) gives the collective ugliness of the entire pattern. It is also sometimes
useful to know how much (or little) an individual pulse contributes to the overall ugliness
of a pattern.

Let u(i) be the individual ugliness value of pulse i in pattern P. It turns out that u(i) can
be computed by taking the variance of the forward distances between pulse i and all the
other pulses in the pattern. Using our previously developed nomenclature, we have:

 () ()()∑
−

=

−
−

=
1

1

2
)(

1
1 n

j
j ii

n
iu δδ (22)

where:

 ()∑
−

=−
=

1

11
1)(

n

j
j i

n
i δδ (23)

For an example, consider one of our previous patterns, 01110101, with P=(1,2,3,5,7).
Using equation (22) on this pattern give us:
 u(0) = 3.6875
 u(1) = 5.0000
 u(2) = 3.6875
 u(3) = 2.1875
 u(4) = 2.1875

We see that the ugliest pulse in the pattern is P1=2, which corresponds to the pulse in slot
2 (the third slot) of the pattern. P0=1 and P2=3 are the next ugliest pulses (owing to their
proximity to P1). P3=5 and P4=7 are the least ugly pulses in the pattern. And in fact, if
you remove P1 from the pattern, you get 01010101 – which is a perfectly even pattern
(Ugliness = 0).

 SNS-NOTE-CNTRL-100

8

Acknowledgements
The majority of the work reported on in this Tech Note was performed during the
summer of 1990 at the Los Alamos Neutron Scattering Center (LANSCE) by Eric
Bjorklund (PI), Joseph Cavanaugh, and Jose Antonio Castaneda Becerra Solorio Cabello
Lopez.

The work on individual ugliness, and the application to the SNS timing system was
performed during the fall of 2002.

References
[1] E.Bjorklund, “Algorithms for Optimally Distributed Timing Pulses”, LANL Report,

LA-UR-89-3558, (1989).
[2] E.Bjorklund, “The Theory of Rep-Rate Pattern Generation in the SNS Timing

System”, SNS ASD Tech Note, SNS-NOTE-CNTRL-99, (2003).

