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E. Bjorklund 

 
Abstract 

When computing repetition rate patterns for SNS timing events, it is sometimes useful to 
be able to measure the quality of a proposed pattern.  The quality of a pattern is 
determined primarily by the evenness of its pulse distribution.  In this tech-report, we 
describe the “Ugliness” function – which measures the degree to which a pattern deviates 
from perfect symmetry.  An “Individual Ugliness” metric is also developed which allows 
us to identify the specific pulse or pulses that are the major contributors to a pattern’s 
collective ugliness.  The general ugliness function is computable in O(n2) time, where n is 
the repetition rate.  The individual ugliness function is computable in O(n) time. 
 

 
Introduction 
Computing super-cycle patterns for various repetition rate values is a fairly efficient and 
straight-forward process as long as there are no constraints on which cycles are available 
for scheduling the pulses (for the details of this process, see [1] and [2]).  Once you 
introduce constraints into the system (for example, “Gate A may only occur on cycles 
that also contain Gate B, but not on cycles that contain Gate C…”) you can quickly run 
into scenarios in which computing the most evenly distributed pattern that meets the 
given constraints is cost-prohibitive.  You then need to resort to heuristic solutions that 
can only guarantee “relatively good” patterns.  As with most optimization problems, the 
heart of a good heuristic lies in having a good, easily computed metric to let you know 
whether a proposed solution is better or worse than the other candidates. 
 
The Properties of Ugliness 
It is easy to recognize a good pattern when you see one.  The trick is to get a computer to 
recognize it.  For example, if the pattern width (super-cycle length) is 8 and your 
repetition rate (number of pulses) is 2, then the pattern: 
 10001000 
is clearly an optimal distribution.  Between every ‘1’ in the pattern, there are three ‘0’s.  
Since timing systems repeat their super-cycles ad nauseam, any rotation of the above 
pattern is also an optimal distribution.  When the rep-rate does not evenly divide the 
super-cycle length, or when there are constraints on where you can place the ‘1’s, the 
situation becomes less obvious.  In the two patterns below: 
 01010100 01001100 
  Pattern A  Pattern B 
It is clear that Pattern A is more evenly distributed than Pattern B.  We would like our 
metric to distinguish between these two patterns as well. 
 
Apart from just measuring evenness, there are some other properties we would like our 
metric to have: 
• The metric must be invariant under rotations.  Since the super-cycle is repeated ad 

nauseam, it is not really important where the pattern begins or ends.  Therefore, the 
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two patterns: 
 01010100 00010101 
should have the same value. 

• The metric should be efficient to compute.  Given the SNS super-cycle length of 
600, we would like to restrict the computational complexity to no more than ( )2nO . 

• The metric should return 0 for a perfectly even pattern.  The value should 
increase as the symmetry of the pattern decreases.  This just makes the metric easier 
to use than if we made the other, less convenient, choice of assigning ∞  to a perfectly 
even pattern. 

The last constraint implies that our metric is actually measuring the lack of symmetry in 
our pattern.  Since the ancient Greeks equated symmetry with beauty, we call our metric 
the “Ugliness” of the pattern.1 
 
Some Methods That Don’t Work (and Why) 
Before describing the metric we eventually adopted, it is useful to gain insight into the 
problem by exploring some techniques that did not meet our criteria, and the reasons for 
their failure.  In this section we also develop some of the nomenclature that we will be 
using to describe the ugliness function (so you can’t skip over this section – in spite of 
the title). 
 
The standard statistical tools for measuring distributions are “Variance” ( 2σ ), and “Mean 
Average Deviation” (MAD).  Variance is computed as: 
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The Mean Average Deviation is similar to the variance, but uses absolute value (instead 
of squaring) to remove the “signedness” of the deviations: 
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Because of the greater range in the variance (squaring the difference produces larger 
values than taking the absolute value does), the “variance” approach usually produces 
better results. 
 
One obvious first attempt at measuring the ugliness of a pattern would be to measure 
either the variance or MAD of the “forward distances” between the ‘1’s in the pattern. 
 

                                                 
1 One implication of this is, of course, is that you can only be so beautiful, but there is no limit on your 
potential for ugliness. 
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Let ( )jid ,  be the distance, measured in a “forward” direction (i.e. left-to-right), with 
wraparound, between the ith and jth elements of the pattern.  ( )jid ,  is computed as 
follows: 
 ( ) ( ) mijjid mod, −=  (4) 
where m is the length of the pattern (super-cycle) and the “mod” function is defined such 
that it always returns a positive value, e.g: 
 ( ) ( ) mxmmx modmod −=−  (5) 
 
Now define the “Pulse Set” (P) of a pattern to be the ordered set of the index values of 
each pulse in the pattern (i.e. “all the ones”).  Formally put, we have: 
 P = {i | the ith slot in the pattern contains a 1} 
 
For example, if the pattern is: 
 01101101 
then 
 P = (1,2,4,5,7) 
 
Note that the first element of the pattern has index value 0.  This convention allows us to 
use modular arithmetic in the indices without requiring further alterations to our 
definition of the “mod” function.  Note also that P is an “ordered” set (this will be 
important later on). 
 
Finally, we define ( )iδ  to be the forward distance between the ith element of P and its 
nearest neighbor in the forward direction (with wraparound).  ( )iδ  is therefore computed 
by the equation: 
 ( ) ( )( )nii PPdi mod1, +=δ  (6) 
 
The “variance” of a rep-rate pattern, can then be expressed as: 
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where n is the number of ‘1’s in the pattern. 
 
So our previous pattern, 01101101, which is represented by the pulse set, P=(1,2,4,5,7), 
generates the δ set, δ =(1,2,1,2,2), from which we compute a pattern variance of 0.24. 
 
At first glance, the variance method appears to have all the characteristics we are looking 
for in a good metric.  It is invariant over rotations, it is zero for a perfectly symmetrical 
pattern, and it is computable in linear time.  However, to see how the variance method 
fails, consider the pattern: 
 01110101 
which also has a variance of 0.24, but is clearly less desirable than our first pattern!  To 
see why this is the case, consider the P and δ sets of the two patterns: 
 P1 = (1,2,4,5,7) δ1 = (1,2,1,2,2) 
 P2 = (1,2,3,5,7) δ2 = (1,1,2,2,2) 
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Both δ sets contain two 1’s and three 2’s, so the sum and mean are the same.  The 
variance calculation sums the same terms for both patterns (although in a different order) 
and so it arrives at the same value. 
 
The key is to notice that the δ set for the first pattern has a more even distribution of 1’s 
and 2’s than the δ set of the second pattern.  Clearly, we need to look at more than just 
the distances between a pulse and its immediate neighbor.  We also need to consider the 
distribution of those distances, and the distribution of  those distributions, etc.  To do this, 
we need to look at the relationship between each pulse and every other pulse in the 
pattern, which leads to the algorithm we finally adopted as our “Ugliness” metric. 
 
The Ugliness Equation 
The algorithm we adopted to measure a pattern’s “Ugliness” is as follows.  First take the 
variance of the forward distances between adjacent pulses. Then take the variance 
between the forward distances of every other pulse, the variance between the forward 
distances of every third pulse, etc.  The mean value of all these variances is defined to be 
the pattern’s “Ugliness”. 
 
We define ( )ijδ  to be the forward distance between pulse i and the jth pulse after i. 
 ( ) ( )( )njiij PPdi mod, +=δ  (8) 
 
An interesting and useful observation on the jδ  function is the relation: 
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where m is the size of the entire pattern, and n is the number of pulses (1’s).  To 
understand the reason for this relationship, consider that when you sum the forward 
distances between each pulse and its nearest neighbor in the forward direction ( )1δ , you 
are, in effect, traversing the entire pattern.  When you sum the forward distances between 
each pulse and its second nearest neighbor in the forward direction ( )2δ , you traverse the 
entire pattern twice, etc.  A direct application of this relationship is that the mean of a jδ  
function can be expressed simply as: 
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The mean of the variances of the jδ  functions (the “Ugliness”) can then be expressed as: 
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Equation (11) can be computed in ( )2nO  time, which fits our criteria for computational 
complexity.  We can reduce the computation time by roughly one half, however, if we 
consider the symmetry between the jδ  and jn−δ  functions. 
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Let D be an ( )1−× nn  matrix constructed from P as follows: 

 ( )
n
jmiD jji −= δ,  (12) 

For example, given the pattern 01101101, with P = (1,2,4,5,7), then: 
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D  

 
Note that the columns of D represent the differences between ( )ijδ  and jδ .  In other 
words, the variance of a jδ  function is given by the mean of the sum of the squares of the 
elements of the jth column of D. 
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Also note that the mean of all the ( )jδvar  functions is the “Ugliness” function specified 
by (11). 
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The following theorem will allow us to cut our computation time in half by only 
considering the first n/2 columns of D in the computation of equation (14)2. 
 
Theorem: 
 )(,mod)(, jnnjiji DD −+−=  
 
The “English Translation” of this theorem is that the last column of D is just a rotation 
and negation of the first column of D.  The penultimate column of D is just a rotation and 
negation of the second column of D, etc.  This relationship can be seen in the example 
above.  
 

                                                 
2 At this point, the astute (or “nit-picky”) reader will probably have noticed the inconsistency in our 
indexing scheme.  The row indices of D begin with 0, and the column indices of D begin with 1.  This is an 
artifact of the definition of D owing to the fact that pulse and slot numbers (i) begin with 0 (so that we can 
use modular arithmetic on them) but forward distances (j) begin with 1 (the forward distance between a 
pulse and itself is of no interest).  We chose to maintain this convention because it makes the following 
proof a lot cleaner. 
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Proof of Theorem: 
By definition (12): 

 ( ) ( )
n

mjnnjiD jnjnnji
)(mod)(,mod)(
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−+= −−+ δ  (15) 

 
By definition (8): 
 ( ) ( )( )njnnjinjijn PPdnji mod)(mod)(mod)( ,mod)( −+++− =+δ  (16) 
 
However, by the properties of modular arithmetic, and the fact that j is always less than n: 
 ( ) ( ) ( ) inninjnjinjnnji PPPP === +−++−++ modmod)()(mod)(mod)(  (17) 
 
Backing up to equation (15), we now manipulate the second term of the subtraction to 
get: 
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Substituting (17) and (18) back into (15) gives us: 

 ( ) ( )
n
jmmPPdD injijnnji +−= +−+ ,mod)(,mod)(  (19) 

 
Referring back to the definition of d given in (4), and our definition of the “mod” 
function given in (5), we can show, using the properties of modular arithmetic, that: 
 ( ) ( )ijdmjid ,, −=  (20) 
 
Substituting (20) back into (19), we get: 

 ( ) n
jmmPPdmD njiijnnji +−−= +−+ ),( mod)(,mod)(  

 ( )
n
jmij +−= δ  

 jiD ,−=  Q.E.D. 
 
As a result of the above theorem, we know that the columns in the second half of the D 
matrix contain exactly the same numbers as the columns in the first half of the D matrix.  
Since the variance calculation squares the column values, the information in the second 
half of the D matrix is completely redundant and therefore does not need to be re-
computed. 
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By using only the first n/2 columns of the D matrix, multiplying by 2, factoring out the 
averaging, and simplifying, we obtain the following “streamlined” ugliness equation: 

 ( ) ( )∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

2

1

1

0

21
2

2 n

j

n

i
j n

jmi
nn

Ugliness δ  

 ( )∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

2

1

1

0

21
2

22
n

j

n

i
j n

jmi
n

n
n

δ  

 ( )∑ ∑
=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

2

1

1

0

22 n

j

n

i
j n

jmi
n

δ  (21) 

 
 
Individual Versus Collective Ugliness 
Equation (21) gives the collective ugliness of the entire pattern.  It is also sometimes 
useful to know how much (or little) an individual pulse contributes to the overall ugliness 
of a pattern. 
 
Let u(i) be the individual ugliness value of pulse i in pattern P.  It turns out that u(i) can 
be computed by taking the variance of the forward distances between pulse i and all the 
other pulses in the pattern.  Using our previously developed nomenclature, we have: 
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For an example, consider one of our previous patterns, 01110101, with P=(1,2,3,5,7).  
Using equation (22) on this pattern give us: 
 u(0) = 3.6875 
 u(1) = 5.0000 
 u(2) = 3.6875 
 u(3) = 2.1875 
 u(4) = 2.1875 
 
We see that the ugliest pulse in the pattern is P1=2, which corresponds to the pulse in slot 
2 (the third slot) of the pattern.  P0=1 and P2=3 are the next ugliest pulses (owing to their 
proximity to P1).  P3=5 and P4=7 are the least ugly pulses in the pattern.  And in fact, if 
you remove P1 from the pattern, you get 01010101 – which is a perfectly even pattern 
(Ugliness = 0). 
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